1. (8 pts) Short answer. Put your answer in the blank. No explanation needed and NO PARTIAL CREDIT!

(a) Evaluate $\int 3^{\sqrt{x}} \, dx$.

Solution: $\frac{3}{4} x^{\frac{4}{3}} + C$.

(b) Evaluate $G'(x)$ for $G(x) = \int_{0}^{x} \sin t \, dt$.

Solution: $\sin x$.

(c) Compute $\int (x^5 - x^2) \, dx$.

Solution: $\frac{1}{6} x^6 - \frac{1}{3} x^3 + C$.

(d) Compute the sum $\sum_{n=1}^{4} (n^2 - 1)$. Your answer should be in the form of an integer.

Solution: $(1^2 - 1) + (2^2 - 1) + (3^2 - 1) + (4^2 - 1) = 0 + 3 + 8 + 15 = 26$.

2. (3 pts) Identify the critical points and find the maximum value and the minimum value for $f(x) = x^2 - 2x + 2$ on the interval $[0, 3]$. Show your work.

Solution: Compute $f'(x) = 2x - 2$. $f'(x) = 0$ only when $x = 1$, which is in the interval $[0, 3]$. So we have three critical points: two endpoints $x = 0, 3$, and the stationary critical point $x = 1$. Compute $f(0) = 2$, $f(1) = 1$, $f(3) = 5$. So the minimum is at $x = 1$ with value 1, and the maximum is at $x = 3$ with value 5.
3. (8 pts) The figure above is a graph of the derivative function $y = f'(x)$. BE SURE TO NOTE THE GRAPH ABOVE IS THE GRAPH OF $y = f'(x)$, NOT THE GRAPH OF $y = f(x)$.

(a) (3 pts) Find all local minimum and maximum points of $f(x)$ on the interval $[0, 5]$. (You should include the endpoints of the interval as possible local maxima and minima.)

Solution: Local minimum points: $x = 1, 5$. Local maximum points $x = 0, 4$.

First the endpoints: $f(x)$ is decreasing once it leaves $x = 0$, and so $x = 0$ is a local maximum. On the other hand, $f(x)$ is decreasing as it approaches $x = 5$, and so $x = 5$ is a local minimum.

For the stationary critical points, the graph shows $f'(x) = 0$ when $x = 1$ and when $x = 4$. Use the First Derivative Test to show $x = 1$ is a local minimum and $x = 4$ is a local maximum.

(b) (2 pts) Find all points of inflection of $f(x)$ on the interval $[0, 5]$.

Solution: $x = 3$ is the only inflection point. f goes from concave up to concave down there (since f' changes from increasing to decreasing there).

(c) (3 pts) On the axes provided below, sketch the graph of $y = f(x)$, assuming that $f(1) = 0$. Be sure your graph reflects the information about the intervals on which $f(x)$ is increasing, decreasing, concave up, and concave down.
4. (4 pts) A farmer is building a rectangular pen against the side of a long barn, as in the picture above. If the area of the pen is to be 5000 ft2, what is the minimum amount of fencing material (measured in ft) that the farmer must use? Show your work.

Solution: Let x be the length of the sides of the pen perpendicular to the barn, and let y be the length of the side of the pen parallel to the barn, as marked in the picture above. Then the total amount of fencing needed is $2x + y$. The area of the pen is fixed at $xy = 5000$ ft2. So we can solve to find $y = \frac{5000}{x}$ and the amount of fencing needed is

$$f(x) = 2x + \frac{5000}{x}.$$

The natural domain of f is x in $(0, \infty)$. Compute $f'(x) = 2 - \frac{5000}{x^2}$. $f'(x) = 0$ when $2 = \frac{5000}{x^2}$, or $x^2 = 2500$, $x = 50$ (we only need to consider positive x). Thus $x = 50$ is the only critical point.
Compute $f''(x) = \frac{10000}{x^3}$ and so $f''(50) > 0$. The second derivative test shows $x = 50$ is a local minimum, and it must be the global minimum since it’s the only critical point in the interval.

So the total amount of fencing material needed is

$$2x + y = 2x + \frac{5000}{x} = 2(50) + \frac{5000}{50} = 200 \text{ ft}.$$

5. (a) (3 pts) Find the general solution to the differential equation $\frac{dy}{dx} = x^2 y^2$. Show your work.

Solution: Compute

$$\frac{dy}{dx} = x^2 y^2,$$

$$\frac{dy}{y^2} = x^2 \, dx,$$

$$\int \frac{dy}{y^2} = \int x^2 \, dx,$$

$$-\frac{1}{y} = \frac{1}{3} x^3 + C,$$

$$y = -\frac{1}{\frac{1}{3} x^3 + C}$$

$$= -\frac{3}{x^3 + 3C}.$$

(b) (3 pts) Find the particular solution to $\frac{dy}{dx} = x^2 y^2$ which passes through the point $(x, y) = (1, 2)$. Show your work.

Solution: Plug in $(x, y) = (1, 2)$ to the general solution above to find

$$2 = -\frac{3}{1^3 + 3C},$$

$$-\frac{3}{2} = 1 + 3C,$$

$$C = -\frac{5}{6},$$

So the particular solution is $y = -\frac{3}{x^3 + 3\left(-\frac{5}{6}\right)} = -\frac{3}{x^3 - \frac{5}{2}}$.

6. (7 pts) Consider the function \(h(\theta) = 3 \tan \theta - 4\theta \) for \(\theta \) in the interval \((-\frac{\pi}{2}, \frac{\pi}{2})\).

(a) (3 pts) Find all the critical points of \(h(\theta) \) in the interval \((-\frac{\pi}{2}, \frac{\pi}{2})\).

Solution: First note \(h(\theta) \) is continuous on the given interval (the tangent function has vertical asymptotes at \(\theta = \pm \frac{\pi}{2} \)). Now compute the derivative \(h'(\theta) = 3 \sec^2 \theta - 4 \). So \(h'(\theta) = 0 \) when

\[
0 = 3 \sec^2 \theta - 4,
\]

\[
\frac{\sec^2 \theta}{4} = \frac{4}{3},
\]

\[
\frac{1}{\cos^2 \theta} = \frac{4}{3},
\]

\[
\frac{\cos^2 \theta}{3} = \frac{3}{4},
\]

\[
\cos \theta = \pm \frac{\sqrt{3}}{2},
\]

\[
\theta = \pm \frac{\pi}{6}.
\]

So the only critical points in the interval are \(\theta = \frac{\pi}{6}, \theta = -\frac{\pi}{6} \).

(b) (2 pts) Classify each critical point from part (a) as a local minimum or a local maximum. Justify your answers.

Solution: Use the Second Derivative Test. Compute \(h''(\theta) = 2 \sec \theta (\sec \theta \tan \theta) = 2 \sec^2 \theta \tan \theta \). So \(h''(\frac{\pi}{6}) = 2 \sec^2 \frac{\pi}{6} \tan \frac{\pi}{6} = 2 \left(\frac{2}{\sqrt{3}} \right)^2 \cdot \frac{1}{\sqrt{3}} > 0 \), and so \(\frac{\pi}{6} \) is a local minimum. On the other hand, \(h''(-\frac{\pi}{6}) = 2 \sec^2 (-\frac{\pi}{6}) \tan (-\frac{\pi}{6}) = 2 \left(\frac{2}{\sqrt{3}} \right)^2 \cdot (-\frac{1}{\sqrt{3}}) < 0 \). So \(-\frac{\pi}{6} \) is a local maximum.

(c) (2 pts) Does \(h(\theta) \) have a global maximum point on the interval \((-\frac{\pi}{2}, \frac{\pi}{2})\)? Why or why not?

Solution: \(h(\theta) \) does not have a global maximum point on this interval since

\[
\lim_{\theta \to -\frac{\pi}{2}} h(\theta) = \lim_{\theta \to -\frac{\pi}{2}} (3 \tan \theta - 4\theta) = 3(\infty) - 4\left(\frac{\pi}{2} \right) = \infty.
\]

So this infinite limit is larger than the value of \(h \) at the local max at \(\theta = -\frac{\pi}{6} \).