Calculus 1: Sample Questions, Exam 1

1. (a) Use the definition of the derivative to compute the derivative \(\frac{d}{dx} \left(\frac{1}{x} \right) \). Show your work.

(b) Compute the tangent line to the graph \(y = \frac{1}{x} \) at the point \((x, y) = (2, \frac{1}{2})\). Put your answer in the form \(y = mx + b \). Show your work.

2. Compute the derivative \(f'(3) \) for \(f(t) = t^2 - 3t + 4 \). Show your work.
3. Let a be a constant, and let $y = \cos ax$. Compute the derivative y'.
 Show your work.

4. If $z = \frac{1}{x^2 + 1}$, compute $\frac{dz}{dx}$ and $\frac{d^2z}{dx^2}$. Show your work.

5. If $g(x)$ is a function satisfying $g(3) = 1$ and $g'(3) = 4$, and $f(x) = x^3g(x)$, compute $f'(3)$. Show your work.
6. Compute the limit \(\lim_{y \to 2} \frac{y^2 - 4y + 4}{y^2 - 5y + 6} \). Show your work.

7. Put the letter of the derivative of the function in the blank.

<table>
<thead>
<tr>
<th>(f(x))</th>
<th>choices for (f'(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\cot x)</td>
<td>(a) (\sin)</td>
</tr>
<tr>
<td>(\sqrt{x})</td>
<td>(b) (\csc^2 x)</td>
</tr>
<tr>
<td>(\sec 2x)</td>
<td>(c) (\cos x)</td>
</tr>
<tr>
<td>(x^{-1})</td>
<td>(d) (-\frac{1}{x^2})</td>
</tr>
<tr>
<td>(\sin x)</td>
<td>(e) (-\frac{1}{2}x^{-\frac{1}{2}})</td>
</tr>
<tr>
<td>(\tan x)</td>
<td>(f) (-\csc^2 x)</td>
</tr>
<tr>
<td>(2 \sec x \tan x)</td>
<td>(g) (2 \sec x \tan 2x)</td>
</tr>
<tr>
<td>(2 \sec^2 x \tan x)</td>
<td>(h) (2 \sec^2 x \tan x)</td>
</tr>
<tr>
<td>(1^{-1})</td>
<td>(i) (1^{-1})</td>
</tr>
<tr>
<td>(2 \tan^2 2x)</td>
<td>(j) (2 \tan^2 2x)</td>
</tr>
<tr>
<td>(\frac{1}{2\sqrt{x}})</td>
<td>(k) (\frac{1}{2\sqrt{x}})</td>
</tr>
</tbody>
</table>
8. What is the slope of the tangent line to the graph of the relation

\[x^2y^2 + y^3 - y = \sqrt{x} \]

at the point \((x, y) = (1, 1)\)? Show your work.

9. Assume the position of a bicycle on a road in miles is given by \(s(t) = -t^2 + 20t\), where \(t\) is measured in hours. Compute the velocity and the acceleration. What is the position of the bicycle when the velocity is 10 mi/hr? Show your work.