1. (4 pts) Use an appropriate linear approximation to approximate $\sqrt[3]{7.97}$. Your answer should be a decimal number. Show your work.

Solution: Let $f(x) = \sqrt[3]{x}$ and $a = 8$. Then compute $f(a) = \sqrt[3]{8} = 2$, $f'(x) = \frac{1}{3}x^{-\frac{2}{3}}$ and $f'(a) = \frac{1}{3} \cdot 8^{-\frac{2}{3}} = \frac{1}{3} \cdot 2^{-2} = \frac{1}{3} \cdot \frac{1}{4}$. Then the linear approximation

$$L(x) = f(a) + f'(a)(x - a) = 2 + \frac{1}{3} \cdot \frac{1}{4}(x - 8),$$

and so

$$L(7.97) = 2 + \frac{1}{3} \cdot \frac{1}{4}(7.97 - 8) = 2 + \frac{1}{3} \cdot \frac{1}{4}(-0.03) = 2 - \frac{1}{4}(0.01) = 2 - 0.0025 = 1.9975$$

2. (6 pts) Compute the following limits. Each answer should be a real number, $+\infty$, $-\infty$, or “does not exist.” Show your work.

(a) $\lim_{x \to \infty} \frac{3}{x^2 + e^x}$.

Solution: As $x \to \infty$, $x^2 \to \infty$ and also $e^x \to \infty$. Thus the sum $x^2 + e^x \to \infty$ as well. So the quotient $\frac{3}{x^2 + e^x} \to 0$ as $x \to \infty$.

(b) $\lim_{t \to 0^+} \cot t$.

Solution: $\cot t = \frac{\cos t}{\sin t}$ and so if $t = 0$, we get the quotient $\frac{1}{0}$. So we expect the limit to be infinite, and we must determine the sign. As $t \to 0^+$, both $\sin t$ and $\cos t$ are positive, and so the limit $\lim_{t \to 0^+} \cot t = +\infty$.

3. (9 pts) Compute the following derivatives. Show your work.

(a) $\frac{d}{dt}(t^2 \ln t)$.

Solution: Use the Product Rule to compute the derivative as $2t \ln t + t^2 \cdot \frac{1}{t} = 2t \ln t + 1$.

(b) $\frac{d}{dx} \tan^{-1}(\frac{1}{x})$.

Solution: Use the Chain Rule to compute

$$\frac{d}{dx} \tan^{-1}(\frac{1}{x}) = \frac{1}{1 + (\frac{1}{x})^2} \cdot \left(-\frac{1}{x^2} \right) = -\frac{1}{x^2 + 1}.$$

(c) $(f^{-1})'(0)$, where $f(x) = 2x + \sin x$.

Solution: Since $f(0) = 2 \cdot 0 + \sin 0 = 0$, we also have $f^{-1}(0) = f^{-1}(f(0)) = 0$. Also, $f'(x) = 2 + \cos x$. So compute

$$(f^{-1})'(0) = \frac{1}{f'(f^{-1}(0))} = \frac{1}{f'(0)} = \frac{1}{2 + \cos 0} = \frac{1}{3}.$$
4. (8 pts) Consider a rectangular box with a square base, which will consist of 4 vertical sides, the base, and the top. If the surface area of the box is constrained to be 24 ft2, what are the dimensions of the box with maximum volume? Show your work.

Solution: The volume of a box of dimensions ℓ, w, h is $V = \ell wh$, and the surface area is $A = 2\ell w + 2\ell h + 2wh$. For a square base, we have $\ell = w$, and so $V = w^2h$ and $A = 2w^2 + 4wh$.

The constraint is $24 = A = 2w^2 + 4wh$. Solving for h gives

$$h = \frac{24 - 2w^2}{4w} = \frac{6}{w} - \frac{w}{2}.$$

The objective function

$$V = w^2h = w^2\left(\frac{6}{w} - \frac{w}{2}\right) = 6w - \frac{w^3}{2}.$$

The interval of w follows from the conditions $h > 0$ and $w > 0$. The formula for h in terms of w shows that $h > 0$ when $w < 2\sqrt{3}$. So the interval for w is $0 < w < 2\sqrt{3}$.

To maximize V, compute

$$\frac{dV}{dw} = 6 - \frac{3}{2}w^2$$

and the critical points are when $6 - \frac{3}{2}w^2 = 0$, $w^2 = 4$, $w = 2$ (we need only consider positive w). We can also compute for the endpoints of the interval $V(0) = V(2\sqrt{3}) = 0$. Thus $V(2) = 6 - 2 - \frac{2^3}{2} = 12 - 4 = 8$ is a global maximum. Thus $w = \ell = 2$ ft, and $h = \frac{6}{2} - \frac{2}{2} = 2$ ft also. The volume is 8 ft3.

5. (8 pts) On the axes provided below, sketch the graph of a function $y = f(x)$ which has the following properties:

- f has domain consisting of the intervals $(-2, 0), (0, 2)$.
- For all x in the domain, $f(-x) = -f(x)$.
- $f(1) = f(-1) = 0$.
- $f''(1) = f''(-1) = 0$, while $f'(x) > 0$ for all other x in the domain.
- $\lim_{x \to 0^-} f(x) = \lim_{x \to 2^-} f(x) = \infty$.
- $\lim_{x \to 0^+} f(x) = \lim_{x \to 2^+} f(x) = -\infty$.
- $f''(x) < 0$ for x in $(-2, -1)$ and x in $(0, 1)$.
- $f''(x) > 0$ for x in $(-1, 0)$ and x in $(1, 2)$.
6. (8 pts) Consider the function \(g(x) = x - \ln x \).

(a) What is the domain of \(g(x) \)?

Solution: The domain of \(\ln x \) is \(x > 0 \), and so \(x > 0 \) is the domain of \(g(x) \) also.

(b) Find all the intervals on which \(g \) is increasing. Also find all intervals on which \(g \) is decreasing. Find all critical points of \(g \). Show your work.

Solution: Compute \(g'(x) = 1 - \frac{1}{x} \) and so \(g'(x) = 0 \) if \(1 - \frac{1}{x} = 0 \), \(x - 1 = 0 \), \(x = 1 \). So \(x = 1 \) is the only critical point in the domain \((0, \infty)\). Now check the sign of \(g'(x) \) for \(x \) in the subintervals \((0, 1)\) and \((1, \infty)\): if \(x = \frac{1}{2} \), \(g'(\frac{1}{2}) = 1 - \frac{1}{\frac{1}{2}} = 1 - 2 < 0 \).

Therefore \(g'(x) < 0 \) for \(x \) in \((0, 1)\). \(g(x) \) is decreasing there. On the other hand for \(x = 2 \), \(g'(2) = \frac{1}{2} - \frac{1}{2} = \frac{1}{2} > 0 \), and so \(g'(x) > 0 \) for \(x \) in \((1, \infty)\). So \(g(x) \) is increasing there.

(c) Find all intervals on which \(g \) is concave up. Find all intervals on which \(g \) is concave down. Show your work.

Solution: Compute \(g''(x) = \frac{1}{x^2} \). This is always positive. So \(g(x) \) is concave up on its domain \((0, \infty)\).