1. (4 pts) Use an appropriate linear approximation to approximate $\sqrt{16.8}$. Your answer should be a decimal number. Show your work.

Solution: Let $f(x) = \sqrt{x} = x^{\frac{1}{2}}$ and $a = 16$. Then compute $f(a) = \sqrt{16} = 2$, $f'(x) = \frac{1}{2}x^{-\frac{1}{2}}$ and $f'(a) = \frac{1}{4} \cdot 16^{-\frac{3}{2}} = \frac{1}{4} \cdot 2^{-3} = \frac{1}{4} \cdot \frac{1}{8}$. Then the linear approximation

$$L(x) = f(a) + f'(a)(x - a) = 2 + \frac{1}{4} \cdot \frac{1}{8}(x - 16),$$

and so

$$L(16.8) = 2 + \frac{1}{4} \cdot \frac{1}{8}(16.8 - 16) = 2 + \frac{1}{4} \cdot \frac{1}{8}(0.8) = 2 + \frac{1}{4}(0.1) = 2 + 0.025 = 2.025$$

2. (6 pts) Compute the following limits. Each answer should be a real number, $+\infty$, $-\infty$, or “does not exist.” Show your work.

(a) $\lim_{x \to \infty} \frac{x^2}{\tan^{-1}x}$.

Solution: As $x \to \infty$, $x^2 \to \infty$, while $\tan^{-1}x \to \frac{\pi}{2}$. Thus the limit is $+\infty$.

(b) $\lim_{t \to 0^-} \cot t$.

Solution: $\cot t = \frac{\cos t}{\sin t}$ and so if $t = 0$, we get the quotient $\frac{1}{0}$. So we expect the limit to be infinite, and we must determine the sign. As $t \to 0^-$, both $\sin t < 0$, while $\cos t > 0$, and so the limit $\lim_{t \to 0^+} \cot t = -\infty$.

3. (9 pts) Compute the following derivatives. Show your work.

(a) $\frac{d}{dx} \cos^{-1}(\sqrt{x})$.

Solution: Use the Chain Rule to compute the derivative as

$$\frac{1}{\sqrt{1 - (\sqrt{x})^2}} \cdot \frac{1}{2\sqrt{x}} = \frac{1}{2\sqrt{1 - x\sqrt{x}}} = \frac{1}{2\sqrt{x} - x^2}.$$

(b) $\frac{d}{dt} \ln t$.

Solution: Use the Quotient Rule to find

$$\frac{d}{dt} \ln t = \frac{t \cdot \frac{1}{t} - (\ln t)1}{t^2} = \frac{1 - \ln t}{t^2}.$$

(c) $(f^{-1})'(0)$, where $f(x) = \sin x - 3x$.

Solution: Since $f(0) = \sin 0 - 3 \cdot 0 = 0$, we also have $f^{-1}(0) = f^{-1}(f(0)) = 0$. Also, $f'(x) = \cos x - 3$. So compute

$$(f^{-1})'(0) = \frac{1}{f'(f^{-1}(0))} = \frac{1}{f'(0)} = \frac{1}{\cos 0 - 3} = -\frac{1}{2}.$$
4. (8 pts) Consider a rectangular box with a square base, which will consist of 4 vertical sides, the base, and the top. If the surface area of the box is constrained to be 6 \(\text{ft}^2 \), what are the dimensions of the box with maximum volume? Show your work.

Solution: The volume of a box of dimensions \(\ell, w, h \) is \(V = \ell w h \), and the surface area is \(A = 2\ell w + 2\ell h + 2wh \). For a square base, we have \(\ell = w \), and so \(V = w^2h \) and \(A = 2w^2 + 4wh \).

The constraint is \(6 = A = 2w^2 + 4wh \). Solving for \(h \) gives

\[
h = \frac{6 - 2w^2}{4w} = \frac{3}{2w} - \frac{w}{2}.
\]

The objective function

\[
V = w^2h = w^2\left(\frac{3}{2w} - \frac{w}{2}\right) = \frac{3}{2}w - \frac{w^3}{2}.
\]

The interval of \(w \) follows from the conditions \(h > 0 \) and \(w > 0 \). The formula for \(h \) in terms of \(w \) shows that \(h > 0 \) when \(w < \sqrt{3} \). So the interval for \(w \) is \(0 < w < \sqrt{3} \).

To maximize \(V \), compute

\[
\frac{dV}{dw} = \frac{3}{2} - \frac{3}{2}w^2
\]

and the critical points are when \(\frac{3}{2} - \frac{3}{2}w^2 = 0 \), \(w^2 = 1 \), \(w = 1 \) (we need only consider positive \(w \)). We can also compute for the endpoints of the interval \(V(0) = V(\sqrt{3}) = 0 \). Thus \(V(1) = \frac{3}{2} \cdot 1 - \frac{1}{2} \cdot 1^3 = \frac{3}{2} - \frac{1}{2} = 1 \) is a global maximum. Thus \(w = \ell = 1 \text{ ft} \), and \(h = \frac{3}{2} - \frac{1}{2} = 1 \text{ ft} \) also. The volume is 1 \(\text{ft}^3 \).
5. (8 pts) On the axes provided below, sketch the graph of a function \(y = f(x) \) which has the following properties:

- \(f \) is continuous on its domain \((-\infty, 2)\).
- \(\lim_{x \to -\infty} f(x) = \infty \).
- \(f(0) = 1, \ f(1) = 0, \ f(1.5) = 2, \ f'(1) \) does not exist.
- \(f'(x) > 0 \) for \(x \) in \((1, 2)\).
- \(f'(x) < 0 \) for \(x < 1 \).
- \(f''(x) < 0 \) for \(x \) in \((-\infty, 1)\) and \(x \) in \((1, 1.5)\).
- \(f''(x) > 0 \) for \(x \) in \((1.5, 2)\).
- \(\lim_{x \to -\infty} f(x) = 2. \)
6. (8 pts) Consider the function \(g(x) = \ln x - 2x \).

(a) What is the domain of \(g(x) \)?

Solution: The domain of \(\ln x \) is \(x > 0 \), and so \(x > 0 \) is the domain of \(g(x) \) also.

(b) Find all the intervals on which \(g \) is increasing. Also find all intervals on which \(g \) is decreasing. Find all critical points of \(g \). Show your work.

Solution: Compute \(g'(x) = \frac{1}{x} - 2 \) and so \(g'(x) = 0 \) if \(\frac{1}{x} - 2 = 0 \), \(1 - 2x = 0 \), \(x = \frac{1}{2} \).

So \(x = \frac{1}{2} \) is the only critical point in the domain \((0, \infty)\). Now check the sign of \(g'(x) \) for \(x \) in the subintervals \((0, \frac{1}{2})\) and \((\frac{1}{2}, \infty)\): if \(x = \frac{1}{4} \), \(g'(\frac{1}{4}) = \frac{4}{4} - 2 = 4 - 2 > 0 \).

Therefore \(g'(x) > 0 \) for \(x \) in \((0, \frac{1}{2})\). \(g(x) \) is increasing there. On the other hand for \(x = 1 \), \(g'(1) = \frac{1}{1} - 2 = -1 < 0 \), and so \(g'(x) \) \(< 0 \) for \(x \) in \((\frac{1}{2}, \infty)\). So \(g(x) \) is decreasing there.

(c) Find all intervals on which \(g \) is concave up. Find all intervals on which \(g \) is concave down. Show your work.

Solution: Compute \(g''(x) = -\frac{1}{x^2} \). This is always negative. So \(g(x) \) is concave down on its domain \((0, \infty)\).