(1) Consider the following function declaration:

```c
int sum(int n);
```

The function `sum` should take as input an integer `n` and return the value 0 if `n <= 0`. If `n > 0`, the value returned should be the sum $1+2+3+\ldots+(n-1)+n$ of the first `n` positive integers. Write the definition of the function `sum` in the space below.

```c
int sum(int n){
    int i, s=0;
    for (i=1; i<=n; i++)
        s += i;
    return s;
}
```
(2) Consider the following function declaration:

```c
bool leap_year (int);
```

This function should take as input an integer `y` and return whether year `y` is a non leap year. The rule for computing leap years is this:

- If `y` is not divisible by 4, `y` is not a leap year. Example: 2003 was not a leap year.
- If `y` is divisible by 4 and not divisible by 100, then `y` is a leap year. Example: 2004 is a leap year.
- If `y` is divisible by 100, then `y` is a leap year ONLY IF it is also divisible by 400. Examples: 1900 was not a leap year, but 2000 was.

Hint: Remember the mod operator `%` can be used to determine divisibility. So the logical expression `(x % 3 == 0)` tests whether an `int` variable `x` is divisible by 3.

Write the function definition in the space below.

```c
bool leap_year (int y){
    if (y%4)
        return false;
    /* so now we know y is divisible by 4. */
    if (y%100)
        return true;
    /* so now we know y is divisible by 100. */
    return (y%400 == 0);
}
```
(3) Consider the following program. Write the output of the program in the space given below:
```
#include <iostream.h>
int f(int);
void main() {
    cout << f(3) << endl;
}
int f(int m){
    cout << m << " ";
    if (m>0)
        return m + f(m-2);
    else
        return 0;
}
```

3 1 -1 4

(4) Mark each of the following logical expressions as either true or false. You can assume we have declared

```
int x=2, y=2, z=4;
```

<table>
<thead>
<tr>
<th>Expression</th>
<th>true</th>
<th>false</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x>=1)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(z==y*x)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>((z<5)</td>
<td></td>
<td>(yyyy<zx*x))</td>
</tr>
<tr>
<td>(!(x==1) && (y==2))</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(y==x++)</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
(5) Consider the following program. What is the output? Put your answer in the space below.

```cpp
#include<iostream.h>
void main() {
    int a=3, x=2;
    do{
        cout << a << " " << x << endl;
        if ((a==1) || (x>2)) a--;
        x += a*a;
    } while ((a!=0) && (x<20));
}
3 2
3 11
2 15
1 16
```

(6) What is the output? Write your answer in the space below.

```cpp
#include<iostream.h>
void jumble (int&, int&, int&, int&);
void main() {
    int a=1, b=2, c=3, d=5;
    jumble (a,b,c,d);
    cout << a << " " << b << " " << c << " " << d << endl;
}
void jumble (int& w, int& x, int& y, int& z){
    int temp = w;
    w = z; z = x; x = y; y = temp;
}
5 3 1 2
```
Multiple choice: circle the letter of the correct answer.

(7) What is the returned value of the function f?
 int f(int x, int y){return (x>y) ? y : x; }
 (a) The sum x + y.
 (b) The difference x - y.
 (c) The maximum of x and y (i.e. the value of the larger of x and y).
 (d) The minimum of x and y (i.e. the value of the smaller of x and y).

(8) The following code fragment should assign the int variable y to be 1 if the int variable x is 1, 3, or 5. It should assign y to be 0 if x is 2. Otherwise, it should assign y to be -1. Fill in the blanks with the correct keywords (your answers should be in the same order as in the code):
 ________________ (x) {
 case 1: case 3: case 5: y = 1; break;
 case 2: y = 0; break;
 ________________: y = -1; break; }
 (a) switch, else.
 (b) default, switch.
 (c) if, else.
 (d) switch, default.

(9) The following code fragment prints out ____ asterisks.
 for (char c='P'; c > 'N'; c--) cout << '*';
 (a) 0
 (b) 2
 (c) 3
 (d) 4
(10) Consider the following program. What is the output?

```cpp
#include<iostream.h>
void main(){
  bool a=true;
  for (int b=1; b<=3; b++){
    a = !a;
    if (a) cout << '+';
  }
  if (a) cout << '-';
}
```

(a) ++
(b) --
(c) ++-
(d) +

(11) Consider the following functions:

```cpp
void spaces(int m){
  for (int i=1; i<=m; i++) cout << " ";
}
void line(int m){
  for (int i=1; i<=m; i++) cout << "*";
  cout << endl;
}
```

Which code fragment prints out the following pattern?

```
*****
****
***
**
*
```

(a) for (int i=1; i<=5; i++){
 spaces(i-1); line(5-i);
}
(b) for (int i=1; i<=5; i++){
 spaces(i-2); line(6-i);
}
(c) for (int i=1; i<=5; i++){
 spaces(i-1); line(6-i);
}
(d) for (int i=1; i<=5; i++){
 spaces(i); line(5-i);
}
(12) What is wrong with the following function definition?

```c
void f(int n) {
    static int b=1;
    b += n--;
    if (n){
        cout << b << endl;
        f(n); }
}
```

(a) It is possible for this function to go into an infinite recursion.
(b) There should be a semicolon after `void f(int n)`.
(c) There is a syntax error in the line `b += n--;`
(d) More than 1 of (a), (b), (c) above.

(13) Consider the following declaration, which occurs at the beginning of the file `program.cpp`, OUTSIDE OF any function definition. Which statement best describes the behavior of the variable `days`?

```c
int days = 7;
```

(a) The value of `days` can only be changed or accessed from within the `main` function.
(b) The value of `days` can be changed or accessed from within any function defined in `program.cpp`.
(c) The value of `days` can be accessed from within any function defined in `program.cpp`, but the value of `days` can be changed only from within the `main` function.
(d) The value of `days` can be accessed from within any function defined in `program.cpp`, but its value can never be changed.