1. Program 8 Instructions, CS102, Prof. Loftin

The Fibonacci numbers F_0, F_1, F_2, \ldots are defined recursively by

$$F_n = \begin{cases}
0 & \text{if } n = 0 \\
1 & \text{if } n = 1 \\
F_{n-2} + F_{n-1} & \text{if } n \geq 2
\end{cases}$$

The first few are

$$0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \ldots$$

This project is to compute Fibonacci numbers in two ways: once by a straightforward application of the recursive algorithm and secondly by the recursive algorithm augmented by a process of memoization, in which the values that have already been computed are stored and then looked up rather than recalculated.

You should write a class Fibonacci which has a main method and also the following public methods:

- `public static int fib(int n)`
- `public static int fibm(int n)`

More specifically, you should

- Write a method `fib` that does performs the unmemoized recursion. Also count the number of times this method is called (use a global static variable for this).
- Create a global static array `F` of 100 ints. If `F[n]` is zero, F_n has not yet been calculated. Otherwise, $F[n]$ should hold the value of F_n.
- Write a method `fibm`. If `fibm(n)` is called, the function should
 - See if F_n has already been calculated. If so, return that value.
 - Use the recursive definition (using `fibm` to calculate F_n).
 - Store F_n in `F`.
 - Return F_n.

Once again, count the number of times the function is called (using another global static variable).

2. Input and Output

Use a Scanner to input a positive integer. The call both `fib` and `fibm` and print out the Fibonacci number computed, together with the number of method calls needed in each case.

Here is the output of my program if the input is 30:

The Fibonacci number is 832040, and fib was called 2692537 times.
The Fibonacci number is 832040, and fibm was called 59 times.
3. Due date: November 16, 2009
4. How to turn it in

Send your program Fibonacci.java as an email attachment to loftin@rutgers.edu.