1. Let $A = B = \{a, b, c\}$. Consider the relation $g = \{(a, b), (b, c), (c, c)\}$. Is g one-to-one? Is g onto? Why?

Solution: g is not one-to-one, since for $c \in A$, $g(b) = g(c) = c$. g is not onto, since $a \notin g(A)$.

2. Consider $f : \mathbb{Z}^+ \rightarrow \mathbb{Z}^+$ defined by $f(a) = a^2$. Is f one-to-one? Is f onto? Why?

Solution: f is one-to-one, since if $f(a) = f(b)$ for $a, b \in \mathbb{Z}^+$, then $a^2 = b^2$. Therefore, since elements of \mathbb{Z}^+ are positive, then we have $a = b$ and thus f is one-to-one. f is not onto. For example, 2 is not in the image $f(\mathbb{Z}^+)$.

3. Put the following functions in order from lowest to highest in terms of their Θ classes. (Some of the functions may be in the same Θ class. Indicate that on your list also.)

(a) $f_1(n) = n \log n$,
(b) $f_2(n) = n^\frac{3}{2}$,
(c) $f_3(n) = 10,000$,
(d) $f_4(n) = \sqrt{n}(n + \log n)$,
(e) $f_5(n) = 3^n$,
(f) $f_6(n) = 2^{n+2}$,
(g) $f_7(n) = 0.0001$.

Solution: These are listed from lowest to highest, with functions with the same Θ class listed on the same line:

- $f_3(n) = 10,000$, $f_7(n) = 0.0001$.
- $f_1(n) = n \log n$.
- $f_2(n) = n^\frac{3}{2}$, $f_4(n) = \sqrt{n}(n + \log n)$.
- $f_6(n) = 2^{n+2}$.
• $f_5(n) = 3^n$.

Why? $f_3(n)$ and $f_7(n)$ are both constants, which is the lowest order of growth.

$f_1(n) = n \log n$, while $f_2(n) = n^{\frac{3}{2}}$. $f_1(n)$ has lower growth order since $f_1(n) = n \cdot \log n$ and $f_2(n) = n \cdot n^{\frac{1}{2}}$ and $\log n$ grows more slowly than $n^{\frac{1}{2}}$ (and indeed $\log n$ grows more slowly than any positive power of n).

$f_2(n)$ and $f_4(n)$ are in the same Θ class, since $n + \log n$ is in the Θ class of n. (This is since $\log n$ has slower order of growth than n.) Therefore, $f_4(n) = \sqrt{n}(n + \log n)$ has the same Θ class as $\sqrt{n} \cdot n = n^{\frac{3}{2}}$.

$f_6(n)$ and $f_5(n)$ are both of higher Θ class than $n^{\frac{3}{2}}$, since any exponential function with base > 1 grows faster than any power of n. $f_5(n) = 3^n$ has higher Θ class than $f_6(n) = 2^{n+2}$, since $f_6(n) = 4 \cdot 2^n$ has the same Θ class as 2^n, and the Θ class of 3^n is higher than that of 2^n since the bases $3 > 2$.

4. Let $S = \{x, y, z\}$, and consider the set $P(S)$ with relation R given by set inclusion. Is R a partial order? Why or why not? (Carefully check the conditions needed for a relation to be a partial order.) Is R a linear order? Again carefully check the conditions for R to be a linear order.

Solution: R is a partial order (i.e., R is reflexive, antisymmetric, and transitive). Recall elements $A, B \in P(S)$ are subsets $A, B \subseteq S$. Then, ARB if and only if $A \subseteq B$. R is reflexive since $A \subseteq A$ always. R is antisymmetric since if $A \subseteq B$ and $B \subseteq A$, then $A = B$. R is transitive since if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

R is not a linear order. In a linear order, each two elements are comparable. In particular $\{x\}, \{y\} \in P(S)$ are not comparable, so that R is not a linear order.

5. Show that $(P(S), R)$ from the previous problem is isomorphic to the poset D_{42} of divisors of 42 with relation given by divisibility.

Solution 1: Here is a quick proof: Since S has 3 elements $(P(S), \subseteq)$ is isomorphic to the Boolean algebra B_3. Since $42 = 2 \cdot 3 \cdot 7$ is the product of 3 distinct primes, then D_{42} is also isomorphic to B_3. It follows that $(P(S), \subseteq)$ and D_{42} are isomorphic since the condition of 2 posets being isomorphic is an equivalence relation (and is thus transitive).
Solution 2: One can also draw the Hasse diagram.

An explicit one-to-one correspondence that preserves the partial orders is the following (there are other such correspondences as well):

\[
\begin{align*}
\{x, y, z\} &\leftrightarrow 42, \quad \{x, y\} \leftrightarrow 6, \quad \{x, z\} \leftrightarrow 14, \quad \{y, z\} \leftrightarrow 21, \\
\{x\} &\leftrightarrow 2, \quad \{y\} \leftrightarrow 3, \quad \{z\} \leftrightarrow 7, \quad \emptyset \leftrightarrow 1.
\end{align*}
\]

6. Consider the relation on \(A = \{a, b, c, d, e\}\).

\[
R = \{(a, a), (a, c), (b, c), (c, d), (e, a), (d, b)\}.
\]

Draw the corresponding digraph. Use Warshall’s algorithm to compute the matrix \(M_{R^\infty}\). Show all the intervening steps.

Answer:

Digraph:
Compute

\[W_0 = M_R = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}, \]

\[W_1 = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \end{bmatrix}, \]

\[W_2 = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \end{bmatrix}, \]

\[W_3 = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 \end{bmatrix}, \]

\[W_4 = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \end{bmatrix}, \]

\[M_{R^\infty} = W_5 = W_4. \]

7. Is there an infinite poset with a least element? Either write down an example or prove that this is impossible.

Solution: \((Z^+, \leq)\) is an infinite poset with least element 1.

8. Which of the following Hasse diagrams represent lattices?
Solution: (I), (III) and (IV) are lattices, for each pair of elements has a least upper bound and a greatest lower bound. (This fails in (II), since a and b do not have a least upper bound.)

9. For the examples in the previous problem, which represent finite Boolean algebras?

Solution: Only (I) represents a finite Boolean algebra. (It is isomorphic to B_2.) (II) does not since it is not even a lattice. (III) does not since it has $5 \neq 2^n$ elements. (IV) is not since there are no complements to each element: The unit element $I = f$ and the zero element $0 = i$ clearly. But given h, for example, there is no complement element h' which satisfies $\text{GLB}(h, h') = 0$ and $\text{LUB}(h, h') = I$: Check each element: $\text{GLB}(f, h) = \text{GLB}(g, h) = \text{GLB}(h, h) = h \neq 0$, while $\text{LUB}(h, i) = h \neq I$.

10. Draw the Hasse diagram for the lattice D_{18} consisting of the divisors of 18 with the partial order of divisibility.
11. Given the following Karnaugh map of a Boolean function, write the function as an equivalent Boolean polynomial.

\[
(y \land z) \lor (x \land y').
\]

See below for the corresponding rectangles:

12. Let \(x, y, z \) be Boolean variables. Use the rules of Boolean algebra (or a truth table with Karnaugh map) to simplify the following expression. Your answer should be as simple as possible.

\[
(x \land z) \lor (y' \lor (y' \land z)) \lor ((x \land y') \land z')
\]
Solution 1: Let $f = (x \land z) \lor (y' \lor (y' \land z)) \lor ((x \land y') \land z')$ and compute

\[
\begin{align*}
\text{f} & = (x \land z) \lor y' \lor (x \land y' \land z') & [\text{Simplify } y' \lor (y' \land z)] \\
& = y' \lor (x \land z) \lor (x \land y' \land z') & [\lor \text{ is commutative}] \\
& = y' \lor (x \land (z \lor (y' \land z')))) & [\land \text{ is distributive over } \lor] \\
& = y' \lor (x \land ((z \lor y') \land (z \lor z'))) & [\lor \text{ is distributive over } \land] \\
& = y' \lor (x \land ((z \lor y') \land I)) \\
& = y' \lor (x \land (z \lor y')) \\
& = (y' \lor x) \land (y' \lor (z \lor y')) & [\lor \text{ is distributive over } \land] \\
& = (y' \lor x) \land ((y' \lor y') \lor z) & [\lor \text{ is commutative and associative}] \\
& = (y' \lor x) \land (y' \lor z) \\
& = y' \lor (x \land z) & [\lor \text{ is distributive over } \land]
\end{align*}
\]

Solution 2: Again let $f = (x \land z) \lor (y' \lor (y' \land z)) \lor ((x \land y') \land z')$ and compute the truth table

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>y'</th>
<th>z'</th>
<th>$x \land z$</th>
<th>$y' \lor (y' \land z)$</th>
<th>$(x \land y') \land z'$</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

From the associated Karnaugh map, we see that $f = y' \lor (x \land z)$.
13. If $b = 1011 \in B_4$, write down the minterm E_b in terms of the Boolean variables x_1, x_2, x_3, x_4.

Solution: $x_1 \land x_2' \land x_3 \land x_4$.

14. True/False. Circle T or F. No explanation needed.
(a) T F If f is a one-to-one function from an infinite set A to itself, then f must be onto.
Solution: F. Problem 2 provides a counterexample.

(b) T F If g is a one-to-one function from a finite set A to itself, then g must be onto.
Solution: T. Use Theorem 4 in Section 5.1.

(c) T F If x is a Boolean variable, then $x \lor x = x$.
Solution: T.

(d) T F If y is a Boolean variable, then $y \lor I = y$.
Solution: F. $y \lor I = I$.

(e) T F Let $B = \{0, 1\}$ with the standard partial order and let $A = B \times B \times B$ with the product partial order. Then A is isomorphic as a lattice to D_{60}.
Solution: F. A is a Boolean algebra, while D_{60} is not (this is because $60 = 2^2 \cdot 3 \cdot 5$ has the prime 2 repeated in its prime decomposition).

(f) T F D_{85} is a Boolean algebra.
Solution: T. $85 = 5 \cdot 17$ is a product of distinct primes.

(g) T F Every finite lattice has a least element.
Solution: T. If the elements of the lattice are a_1, \ldots, a_n, then $a_1 \land \cdots \land a_n$ is the least element.

(h) T F Every poset has a greatest element.
Solution: F. For example, the poset (\mathbb{R}, \leq) has no greatest element; i.e., there is no largest real number.

(i) T F $f(n) = \log_5(n)$ is $O(\lg(n))$.
Solution: T. $\log_5(n) = \lg(n)/\lg(5)$.

(j) T F If g is the mod-10 function, then $g(405) = 4$.
Solution: F. $g(405) = 5$.

(k) T F If x and y are Boolean variables, then $(x \land y)' = x' \lor y'$.
Solution: F. DeMorgan’s Laws state that $(x \land y)' = x' \lor y'$.

15. Consider the relation R on $A = \{1, 2, 3, 4\}$ given by the matrix

$$M_R = \begin{bmatrix}
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}.$$
Is R a partial order? Why or why not?

Solution: R is not a partial order since R is not antisymmetric ($2R3$ and $3R2$ but $2 \neq 3$.)

16. Consider the poset (A, \leq) given by the following Hasse diagram.

(a) List all the minimal elements of (A, \leq).

Solution: g.

(b) List all the upper bounds of $B = \{c, d\} \subseteq A$.

Solution: b, c.

(c) List a pair of incomparable elements of A (if such a pair exists).

Solution: a, c and d, e are incomparable pairs (you only need to write down one of the two pairs).

(d) Is (A, \leq) a lattice? Why or why not?

Solution: (A, \leq) is not a lattice since GLB(a, c) does not exist (d, e, f, g are all lower bounds, but there is no greatest element among them). Similarly, LUB(d, e) does not exist.

17. Let $A = \{\ast, q, 1\}$, with partial order determined by $q < 1 < \ast$. Put the following elements of $A \times A \times A$ in lexicographic order:

$(q, q, 1), \ (q, 1, \ast), \ (\ast, *, q), \ (q, q, q), \ (\ast, 1, 1), \ (1, *, q), \ (q, 1, 1), \ (\ast, * , *)$

Solution:

$(q, q, q) \prec (q, q, 1) \prec (q, 1, 1) \prec (q, 1, \ast) \prec (1, *, q) \prec (\ast, 1, 1) \prec (\ast, *, q) \prec (\ast, *, *)$