Discrete Structures: Sample Questions, Final Exam

Solutions

1. Construct the labeled tree of the algebraic expression

\[((x - y) * z) - 3)/(19 + (x * x))\].

Solution:

![Tree Diagram]

2. Show the results of a PREORDER search for the following labeled positional binary tree.

Solution: AXQXBZBYFAP
3. Consider the following example. Let $G = \{V, S, \langle \text{integer} \rangle, \rightarrow\}$ for

$$
S = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, -\},
$$

$$
V = S \cup \{\langle \text{integer} \rangle, \langle \text{unsigned-integer} \rangle, \langle \text{digit} \rangle\},
$$

and let part of the production relation given in BNF notation be given by

$$
\langle \text{unsigned-integer} \rangle ::= \langle \text{digit} \rangle | \langle \text{digit} \rangle \langle \text{unsigned-integer} \rangle
$$

$$
\langle \text{digit} \rangle ::= 0|1|2|3|4|5|6|7|8|9
$$

Design the production relation for $\langle \text{integer} \rangle$ so that an integer can be either an unsigned integer, or an unsigned integer preceded by a + or − (not both). So +324, 009, −8922 are all valid integers, but +−87, 00−2+, and + are not valid integers. Write the remaining part of the production relation in BNF notation.

Solution:

$$
\langle \text{integer} \rangle ::= \langle \text{unsigned-integer} \rangle | +\langle \text{unsigned-integer} \rangle | −\langle \text{unsigned-integer} \rangle
$$

4. Consider $G = (V, I, v_0, \rightarrow)$, where $V = \{v_0, w, a, b, c\}$, $I = \{a, b, c\}$, and \rightarrow defined by

$$
v_0 \rightarrow aw, \quad w \rightarrow bw, \quad w \rightarrow bc.
$$

(a) Write the production relation in BNF notation.

Solution:

$$
\langle v_0 \rangle ::= a\langle w \rangle
$$

$$
\langle w \rangle ::= bb\langle w \rangle | bc
$$

(b) Draw the syntax diagrams of v_0 and w separately, and then draw a master syntax diagram for v_0. (Recall a master diagram is one that involves no nonterminal symbols.)

Solution:
(c) Show that the sentence ab^5c is in the language $L(G)$. Draw a derivation tree for this sentence.

Solution: $ab^5c \in L(G)$ since

$$v_0 \Rightarrow aw \Rightarrow abbw \Rightarrow abbbbw \Rightarrow abbbbbc = ab^5c.$$

(The first \Rightarrow follows from $v_0 \mapsto aw$, the second two \Rightarrow's follow from $w \mapsto bbw$, and the last \Rightarrow follows from $w \mapsto bc$.) The derivation tree is below:

(d) Describe the language $L(G)$ in words, and find the regular expression over $I = \{a, b, c\}$ it corresponds to.
Solution: In deriving a sentence in $L(G)$, the first step must always be $v_0 \rightarrow bw$, and the final step must involve $w \rightarrow bc$ (since this is the only production with only terminal symbols on the right). The only choice is how many times to use the step $w \rightarrow bbw$. This step can be used n times, where $n = 0, 1, 2, \ldots$. The sentence produced is then $a(b^2)^nbc = ab^{2n+1}c$. Thus

$$L(G) = \{ab^{2n+1}c \mid n = 0, 1, 2, \ldots \}.$$

The regular expression corresponding to $L(G)$ is $a(bb)^*bc$. (The * represents n as above.)

(e) Find a Moore machine $M = (S, I, F, v_0, T)$ which produces this language $L(G)$. Draw the state diagram and the labeled digraph for M.

Solution:

Here is a description of the states of the Moore machine in words.

- s_0 is the starting state. No inputs have been received yet.
- At s_1, there has been an initial a input possibly followed by an even number of b’s.
- At s_2, there has been an initial a input, followed by an odd number of b’s (the first b comes from s_1, and an even number is supplied by the loop between s_2 and s_1).
- s_3 is the only acceptance state. An initial a, an odd number of b’s and a final c have been input here.
• s_4 is the garbage state. Any wrong input at any stage lands here, and any further input makes it remain here. (Because of the structure of the regular expression $a(bb)^*bc$, any wrong move leads to the garbage state.)

The state transition table of this Moore machine is

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_0</td>
<td>s_1</td>
<td>s_4</td>
<td>s_4</td>
</tr>
<tr>
<td>s_1</td>
<td>s_4</td>
<td>s_2</td>
<td>s_4</td>
</tr>
<tr>
<td>s_2</td>
<td>s_4</td>
<td>s_1</td>
<td>s_3</td>
</tr>
<tr>
<td>s_3</td>
<td>s_4</td>
<td>s_4</td>
<td>s_4</td>
</tr>
<tr>
<td>s_4</td>
<td>s_4</td>
<td>s_4</td>
<td>s_4</td>
</tr>
</tbody>
</table>

5. Consider the rooted tree (T, v_0) given below.

(a) List all the level-2 vertices of the tree.
 Solution: v_4, v_5, v_6, v_7.

(b) List all the leaves of the tree.
 Solution: $v_1, v_{12}, v_9, v_5, v_{10}, v_{11}, v_7$.

(c) List all the siblings of v_3.
 Solution: v_1, v_2.

(d) Draw the digraph of the subtree $T(v_4)$ with root v_4.
 Solution: This is the subtree with vertices v_4, v_8, v_9, v_{12}.
6. Given the BNF representation for the master syntax diagram given below. You may provide nonterminal symbols as needed (in addition to \(v_0 \)) to use in the BNF productions, and you may use several BNF statements if needed.

Solution: The solution below adds two more nonterminal symbols \(w \) and \(y \). These extra symbols will be placed at the junctions in the master diagram where a recursive loop joins another arrow. There are 2 such places in this diagram: In the upper center-left (at the junction right after the \(a \) and \(b \), we place the symbol \(w \)). Also, in the lower right of the master diagram, we place a \(y \) at this recursive junction. (See the diagram below.) To see what happens to the nonterminal symbols \(v_0, w, y \), now we trace along the possible paths in the master diagram, ending whenever we come to a nonterminal symbol (or the end of an arrow of course).
We find the following production relations, in BNF notation. (Recall \(\Lambda \) represents the empty string.)

\[
\langle v_0 \rangle ::= ab \langle w \rangle
\]
\[
\langle w \rangle ::= \Lambda | \langle y \rangle
\]
\[
\langle y \rangle ::= d \langle w \rangle | dd \langle y \rangle | dc \langle y \rangle
\]

Below are the syntax diagrams of \(v_0, w, y \):

It is also possible to simplify this expression by getting rid of \(w \). In this case, the production relations will be

\[
\langle v_0 \rangle ::= ab \ | \ ab \langle y \rangle
\]
\[
\langle y \rangle ::= d \ | \ d \langle y \rangle \ | \ dd \langle y \rangle \ | \ dc \langle y \rangle
\]
7. Construct the digraph of the positional binary tree for the following doubly linked list. Label each vertex with the corresponding data.

<table>
<thead>
<tr>
<th>INDEX</th>
<th>LEFT</th>
<th>DATA</th>
<th>RIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>M</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>Q</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>V</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>X</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>K</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>D</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>G</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>C</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>Y</td>
<td>0</td>
</tr>
</tbody>
</table>

Solution:

![Digraph of the positional binary tree]

8. Construct a Moore machine M that will accept any string ending in ab from input strings of a, b, c. In other words, $I = \{a, b, c\}$, and $L(M) = (a \lor b \lor c)^{*}ab$. Draw the labeled digraph of M and draw its state transition table.
Solution:

We describe each of the states:

- s_0 is the starting state. In addition, it represents any state in which we must “start over.” Since we are looking to accept only strings ending in ab, if a c is input or if a b not preceded by an a is input, we must start over.

- s_1 is the state at which the previous input is an a. Then if a b is input next, we go the acceptance state.

- s_2 is the only acceptance state, and the 2 previous inputs must be ab.

The state transition table for this Moore machine is

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_0</td>
<td>s_1</td>
<td>s_0</td>
<td>s_0</td>
</tr>
<tr>
<td>s_1</td>
<td>s_1</td>
<td>s_2</td>
<td>s_0</td>
</tr>
<tr>
<td>s_2</td>
<td>s_1</td>
<td>s_0</td>
<td>s_0</td>
</tr>
</tbody>
</table>

9. Consider the regular expression $0(0\lor1)^*1$ over the input set $I = \{0, 1\}$.

 (a) Construct a Moore machine with input set I whose language corresponds to this regular expression.

 Solution:
We describe the states:

- s_0 is the starting state.
- s_1 is reached after a 0 is entered (as long as the initial input is 0). Then if a 1 is entered, the state advances to the acceptance state s_2.
- s_2 is the only acceptance state. It is reached only if the initial input is 0 and the final input is 1.
- s_3 is the garbage state. If the initial input is 1 (i.e. not 0), then the machine goes to the garbage state and must stay there.

(b) Construct a Type 3 grammar $G = (V, I, s_0, \to)$ corresponding to the Moore machine constructed the previous part.

Solution: $G = (V, I, s_0, \to)$, where $V = I \cup S$, $S = \{s_0, s_1, s_2, s_3\}$. The production relation \to is, in BNF notation

- $s_0 ::= 0s_1 \mid 1s_3$
- $s_1 ::= 0s_1 \mid 1s_2$
- $s_2 ::= 0s_1 \mid 1s_2 \mid \lambda$
- $s_3 ::= 0s_3 \mid 1s_3$

(Note that in this grammar, if the garbage state s_3 is ever reached, then further production leads to an infinite loop.)

10. (a) Define a monoid.

Solution: A monoid is a mathematical structure (A, \ast), where A is a set and \ast is a binary relation on A satisfying the following properties:
• * is associative; i.e. for all \(a, b, c \in A \), \((a * b) * c = a * (b * c)\).
• There is an identity element \(e \in A \) for the operation *. I.e. \(e \) satisfies \(a * e = e * a = a \) for every \(a \in A \).

(b) Let \(I \) be a set, and let \(I^* \) be the set of strings on \(I \). Show that \(I \) is a monoid with operation given by catenation (i.e., if \(w, z \in I^* \), define \(w * z = w \cdot z \)).

Solution: In order to show \(I^* \) is a monoid, we must check the two properties above: that \(\cdot \) is associative, and that there is an identity element.

To show \(\cdot \) is associative, recall what catenation does. It takes two strings in \(I \) and sticks them together back to back. So if \(w = a_1 \ldots a_n \), \(z = b_1 \ldots b_m \in I^* \), then \(w \cdot z = a_1 \ldots a_n b_1 \ldots b_m \).

Thus if we have another string \(x = c_1 \ldots c_p \) in \(I^* \), we find

\[
(w \cdot z) \cdot x = (a_1 \ldots a_n b_1 \ldots b_m) \cdot (c_1 \ldots c_p) = a_1 \ldots a_n b_1 \ldots b_m c_1 \ldots c_p = (a_1 \ldots a_n) \cdot (b_1 \ldots b_m c_1 \ldots c_p) = w \cdot (z \cdot x)
\]

Since this works for all strings \(w, z, x \in I^* \), we find \(\cdot \) is associative.

The identity element for \(\cdot \) is the empty string \(\Lambda \). It is easy to see that for any string \(w \in I^* \), \(w \cdot \Lambda = \Lambda \cdot w = w \). This shows that \(I^* \) is a monoid with operation \(\cdot \).

11. (a) Let \(g : Z \to \{0, 1, 2\} \) be the mod 3 function. Complete the following table:

<table>
<thead>
<tr>
<th>(g(n))</th>
<th>(g(2n + 0))</th>
<th>(g(2n + 1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

For example, the lower left corner means that if \(n \) is an integer with \(g(n) = 2 \), then we must have \(g(2n + 1) = 2 \). This can be proved as follows: \(g(n) = 2 \) if and only if there is an integer \(k \) so that \(n = 3k + 2 \). Then

\[
2n + 1 = 2(3k + 2) + 1 = 6k + 5 = (6k + 3) + 2 = 3(2k + 1) + 2,
\]
and so the mod 3 function g applied to $2n + 1$ is 2.

Solution: The extra entries are in bold above. For the first row, right entry, if $g(n) = 0$, then $g(2n + 1) = 1$. This is because

$$n = 3k \implies 2n + 1 = 2(3k) + 1 = 3(2k) + 1$$

and so $2n + 1$ is 1 mod 3.

The second row, center entry: if $g(n) = 1$, then $g(2n + 0) = 2$, since

$$n = 3k + 1 \implies 2n + 0 = 2(3k + 1) = 3(2k) + 2$$

and so $2n + 0$ is 2 mod 3.

The second row, right entry: if $g(n) = 1$, then $g(2n + 1) = 0$, since

$$n = 3k + 1 \implies 2n + 1 = 2(3k + 1) + 1 = 3(2k + 1)$$

and so $2n + 1$ is 0 mod 3.

The third row, center entry: if $g(n) = 2$, then $g(2n + 0) = 1$, since

$$n = 3k + 2 \implies 2n + 0 = 2(3k + 2) = 3(2k + 1) + 1$$

and so $2n + 0$ is 1 mod 3.

(b) Consider the Moore machine with input set $I = \{0, 1\}$ given below.

![Moore machine diagram](image)

We think of elements of I^* as binary integers. Provide a proof by mathematical induction that the Moore machine accepts exactly those binary integers which are divisible by 3. (Hint: we may identify s_0 as the set of integers that are 0 mod 3, s_1 as the set of integers which are 1 mod 3, and s_2 as the set of integers which are 2 mod 3. What does this have to do with the table you completed above?)
Solution: Here is the statement to be proved by mathematical induction:

\(P(m) \) For a string \(w \in I^* \) of length \(m \) representing a base-2 integer \(n_w \) with \(m \) digits, the mod 3 function \(g \) determines the state of \(f_w(s_0) \) by the following table:

<table>
<thead>
<tr>
<th>(g(n_w))</th>
<th>(f_w(s_0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(s_0)</td>
</tr>
<tr>
<td>1</td>
<td>(s_1)</td>
</tr>
<tr>
<td>2</td>
<td>(s_2)</td>
</tr>
</tbody>
</table>

First note that if \(w = a_{m-1} \ldots a_0 \) is a binary number with \(m \) digits, then

\[n_w = a_{m-1}2^{m-1} + \ldots + a_12^1 + a_02^0. \]

For the empty string \(\Lambda \), then \(n_\Lambda \) should represent adding up no terms, which is 0.

Base case of the induction (\(m = 0 \)): \(P(0) \). The only string of length 0 is \(\Lambda \), and we have that \(g(n_\Lambda) = g(0) = 0 \), while \(f_\Lambda(s_0) = 1_s(s_0) = s_0 \). So the basis step \(P(0) \) is checked in this case.

(If this discussion about the empty string is too slick for you, you could also do \(m = 1 \) as the base case: \(P(1) \). The only 2 strings of length 1 are the single bits 0 and 1. Check \(g(n_0) = g(0) = 0 \), \(f_0(s_0) = s_0 \); \(g(n_1) = g(1) = 1 \), \(f_1(s_0) = s_1 \). So the case \(P(1) \) works as well.)

Now for the induction step: Assume \(P(k) \) is true for \(k \geq 0 \), and we will use this to prove \(P(k + 1) \).

The key idea is to notice what happens to the binary numbers when another bit is added to the end. If \(w \) is a sentence in \(I^* \) represented the integer \(n_w \) in base 2, then \(w \cdot 0 \) represents the integer \(n_w0 = 2n_w = 2n_w + 0 \). (The corresponding fact in base ten is that if write a 0 at the end of a decimal integer \(p \), the new integer is \(10p \).) Similarly, \(n_w1 = 2n_w + 1 \). (If \(d \) is a decimal digit and \(p \) is an integer in base 10, then \(d \) written after \(p \) produces the integer \(10p + d \).)

The induction step is then checked by the fact that the table on
the left computed above

<table>
<thead>
<tr>
<th>g(n)</th>
<th>g(2n + 0)</th>
<th>g(2n + 1)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>s0</td>
<td>s0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>s1</td>
<td>s2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>s2</td>
<td>s0</td>
</tr>
</tbody>
</table>

corresponds exactly to the state transition table on the right (which comes from the digraph of the Moore machine). Let \(w \) be a string in \(I^* \) of length \(k \). Thus, when a 0 is added to the end of the string \(w \), the integer \(n_w \) goes to \(2n_w + 0 \), and \(g(n_w) \) goes to \(g(2n_w) \) according to the table on the left. On the other hand, when a 0 is added to the string \(w \), the state \(f_w(s_0) \) goes to the next state \(f_{w-0}(s_0) = f_0(f_w(s_0)) \) according to the table on the right. The tables match up exactly, and this shows that if the digit 0 is added to \(w \) to form a binary integer of \(k + 1 \) digits, then this part of \(P(k + 1) \) holds.

Similarly, when a 1 is added to the end of \(w \), the corresponding values also match up, and thus we have the following: If \(w \) is a string of \(k \) bits, and \(P(k) \) holds, then either adding a 0 or a 1 to the end gives an integer for which \((*)\) holds as well. Since every string of \(k + 1 \) bits is formed from adding a 0 or 1 to a \(k \)-bit string, this shows that \(P(k + 1) \) holds.

Therefore, by induction, \(P(m) \) holds for all integers \(m \).

The language

\[
L(M) = \{ w \in I^* \mid f_w(s_0) = s_0 \}
\]

since \(s_0 \) is the only acceptance value. The induction statement \(P(m) \) shows that for any string of bits \(w \) of any length \(m \), the elements of \(L(M) \) are exactly those \(w \) so that \(g(n_w) = 0 \). Since \(g \) is the mod 3 function, these are exactly those binary integers which are divisible by 3.

12. Consider the finite state machine whose state transition table is

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>s0</td>
<td>s0</td>
<td>s1</td>
</tr>
<tr>
<td>s1</td>
<td>s0</td>
<td>s0</td>
</tr>
<tr>
<td>s2</td>
<td>s2</td>
<td>s0</td>
</tr>
</tbody>
</table>
List all the values of the transition function f_{abcc}.

Solution:

<table>
<thead>
<tr>
<th>s</th>
<th>$f_{abcc}(s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_0</td>
<td>s_2</td>
</tr>
<tr>
<td>s_1</td>
<td>s_1</td>
</tr>
<tr>
<td>s_2</td>
<td>s_1</td>
</tr>
</tbody>
</table>

13. Evaluate the expression $3 \ 4 - 6 + 6 \ 12 \div +$, which is in reverse Polish (postfix) notation.

Solution: Compute

$3 \ 4 - 6 + 6 \ 12 \div +$
$(-1) \ 6 + 6 \ 12 \div +$
$5 \ 6 \ 12 \div +$
$5 \ 0.5 +$
5.5

14. For the Moore machine M given below, construct a type 3 grammar $G = (V, I, s_0, \rightarrow)$ so that $L(G) = L(M)$. Express the production relation in terms of both \rightarrow notation and BNF notation.

![Moore machine diagram]

Solution: $G = (V, I, s_0, \rightarrow)$ with $I = \{0, 1, 2\}$, $V = I \cup S$, $S = \{s_0, s_1, s_2, s_3\}$, and \rightarrow given by

$s_0 \rightarrow 0s_0, \quad s_0 \rightarrow 1s_1, \quad s_0 \rightarrow 2s_3,$
$s_1 \rightarrow 0s_2, \quad s_1 \rightarrow 1s_0, \quad s_1 \rightarrow 2s_3,$
$s_2 \rightarrow 0s_2, \quad s_2 \rightarrow 1s_2, \quad s_2 \rightarrow 2s_2, \quad s_2 \rightarrow \Lambda,$
$s_3 \rightarrow 0s_1, \quad s_3 \rightarrow 1s_1, \quad s_3 \rightarrow 2s_3, \quad s_3 \rightarrow \Lambda$
In BNF notation, \rightarrow is expressed as

\[
\langle s_0 \rangle ::= 0\langle s_0 \rangle \mid 1\langle s_1 \rangle \mid 2\langle s_3 \rangle \\
\langle s_1 \rangle ::= 0\langle s_2 \rangle \mid 1\langle s_0 \rangle \mid 2\langle s_3 \rangle \\
\langle s_2 \rangle ::= 0\langle s_2 \rangle \mid 1\langle s_2 \rangle \mid 2\langle s_2 \rangle \mid \Lambda \\
\langle s_3 \rangle ::= 0\langle s_1 \rangle \mid 1\langle s_1 \rangle \mid 2\langle s_3 \rangle \mid \Lambda
\]
15. True/False. Circle T or F. No explanation needed. For (a)-(g), refer to the digraph of the Moore machine \(M = (S, I, \mathcal{F}, s_0, T) \) represented in the previous problem.

(a) T F \(f_{02}(s_1) = s_2 \)

Solution: T.

(b) T F \(f_{1112}(s_0) = (f_{11} \circ f_{11})(s_0) \).

Solution: T. This can either be checked directly or you can recognize that this follows from the fact that \(f_{w \cdot w'} = f_w \circ f_{w'} \) for \(w = 11 \) and \(w' = 112 \).

(c) T F \(0100 \in L(M) \). (Recall \(L(M) \) is the language of \(M \).)

Solution: T. \(f_{0100}(s_0) = s_2 \in T = \{ s_2, s_3 \} \).

(d) T F \(121 \in L(M) \).

Solution: F. \(f_{121}(s_0) = s_1 \notin T \).

(e) T F There is a Type 3 grammar \(G \) with terminal symbols \(I = \{0, 1, 2\} \) so that \(L(M) = L(G) \).

Solution: T. This follows from Theorem 1 in Section 10.5.

(f) T F If \(w \in I^* \) contains an odd number of 2’s, then we must have \(w \in L(M) \).

Solution: F. \(20 \notin L(M) \) since \(f_{20}(s_0) = s_1 \notin T \).

(g) T F \(f_{201}(s_1) = s_2 \).

Solution: F. \(f_{201}(s_1) = s_0 \).

(h) T F If \((T, v_0) \) is a rooted tree on a set \(A \), then the relation \(T \) is irreflexive.

Solution: T. Theorem 2 in Section 7.1 (Otherwise, if \(vTv \) for some vertex \(v \) this creates a nonunique path from \(v_0 \) to \(v \).

(i) T F If \(A = \{1, 2, 3, 4, 5, 6\} \) and \(R \) is the relation \(\{ (1, 2), (1, 4), (3, 5), (3, 6) \} \), then \(R \) is a tree on \(A \).

Solution: F. If \(R \) were a tree, then the root would be the unique element with in-degree 0. In this case, both 1 and 3 have in-degree 0, so \(R \) cannot be a tree.
(j) T F In BNF notation, \(v_0 ::= v_1a \) is an acceptable production relation for a Type 1 phase structure grammar.
Solution: T. For a Type 1 grammar, all that is required is that the length of the string on the right \(v_1a \) be greater than or equal to the length of the string on the left \(v_0 \).

(k) T F In BNF notation, \(v_0 ::= v_1a \) is an acceptable production relation for a Type 2 phase structure grammar.
Solution: T. For a Type 2 grammar, all that is required is that the left hand side \(v_0 \) must be a single nonterminal symbol.

(l) T F All the vertices of a complete binary tree have out-degree either 0 or 2.
Solution: T. Every vertex of a complete 2-tree which is not a leaf (out-degree 0) has out-degree exactly 2.

(m) T F Every vertex of a tree has in-degree 1.
Solution: F. The root of a tree has in-degree 0, not 1.

(n) T F In BNF notation, \(v_0 ::= v_1a \) is an acceptable production relation for a Type 3 phase structure grammar.
Solution: F. For a Type 3 grammar, the right hand side \(v_1a \) must have the nonterminal symbol \(v_1 \) at the far right of the expression.

(o) T F Let \(G = (V, S, v_0, \to) \) be a phase structure grammar with \(S = \{a, b, c\} \), \(V = S \cup \{v_0, v_1\} \), and the production relation determined by

\[
v_0 \to av_0, \quad v_0 \to av_1, \quad v_1 \to bcv_0, \quad v_1 \to c.
\]

Then \(v_0 \Rightarrow^* abc \).
Solution: F. The only way a string containing \(bc \) can be produced from \(v_0 \) is via \(v_1 \to bcv_0 \). But then the productions for \(v_0 \) all begin with \(a \), so if \(bc \) is in a sentence in the language, it must be followed by an \(a \).

(p) T F For the grammar \(G \) in part (k), the regular expression for the language \(L(G) \) is \((a \lor abc)^*c \).
Solution: F. \(abcc \) is in the regular set for this regular expression, but as in part (k), \(abcc \) is not in the language \(L(G) \).
(q) T F The string xxy is in the regular set determined by the regular expression $(xx \lor (xy)^* \lor xy^*)^*$.

Solution: T. x and xy are both in the regular set for the expression xy^*. So both x and xy are in the regular set for the expression $xx \lor (xy)^* \lor xy^*$. The outermost * at the end of the expression $(xx \lor (xy)^* \lor xy^*)^*$ means that $xx\lor(xy)^*\lor xy^*$ can be repeated twice, the first time producing x and the second time producing xy. Thus xxy is in the regular set.

(r) T F $0^*(1 \lor \Lambda)$ is a regular expression over the set $I = \{0, 1\}$.

Solution: T. Recall Λ the empty string can be used in regular expressions for any set.

(s) T F $37 \times 4 - 9 \times 65 \times 2 +$ is a valid mathematical expression in reverse Polish (postfix) notation.

Solution: F. There are not enough binary expressions. Compute

\[
\begin{align*}
37 \times 4 - 9 \times 65 \times 2 + \\
21 4 - 9 \times 65 \times 2 + \\
17 9 \times 65 \times 2 + \\
153 65 \times 2 + \\
153 30 2 + \\
153 32
\end{align*}
\]

So we are left with 2 numbers and no binary expression with which to combine them.