1. (17 pts) Consider the function $f(x)$ given by the following graph of $y = f(x)$.

(a) (3 pts) Evaluate $f(-2)$.

$$f(-2) = -1$$

(b) (3 pts) Does $f(x)$ have an inverse function? Why or why not?

No. It fails the horizontal line test.

(c) (3 pts) What are the interval(s) where $f(x)$ is increasing?

$$[-2, 2]$$

(d) (3 pts) Which symmetries does the graph $y = f(x)$ satisfy? y-axis symmetry? x-axis symmetry? Origin symmetry? Note: This is a hand-drawn graph, so it cannot be perfect. If it seems very close to having a given symmetry, then it does have that symmetry for the purposes of this test.

Origin symmetry only
(c) (5 pts) On the axes provided, sketch the graph of $y = f(-x + 1)$. (The other axes at the bottom of the page may be used for practice or intermediate steps.)

Answer:

Extra xy axes for practice:
2. (10 pts) Consider

\[F(x) = \frac{x - 3}{2x + 1} \]

(a) (5 pts) Compute the inverse function \(F^{-1}(x) \). Show your work.

\[y = F(x) = \frac{x - 3}{2x + 1} \]

Switch \(x, y \):

\[x = \frac{y - 3}{2y + 1} \]

Solve for \(y \):

\[x(2y + 1) = y - 3 \]

\[2xy + x = y - 3 \]

\[2xy - y = -x - 3 \]

\[(2x - 1)y = -x - 3 \]

\[y = \frac{-x - 3}{2x - 1} = F^{-1}(x) \]

(b) (5 pts) Compute \((F \circ F)(3) \). Show your work. You may express your answer either as a fraction or as a decimal number.

\[(F \circ F)(3) = F(F(3)) = F\left(\frac{3 - 3}{2(3) + 1} \right) \]

\[= F\left(\frac{0}{7} \right) = F(0) \]

\[= \frac{0 - 3}{2(0) + 1} = \frac{-3}{1} = -3 \]
3. (16 pts)

(a) (4 pts) On the axes provided, sketch the graph of \(y = x^2 \). Clearly label the intercepts.

(b) (4 pts) On the axes provided, sketch the graph of \(y = -\frac{1}{2}x + 1 \). Clearly label the intercepts.

\[
y : \text{intercept : } x = 0 \\
y = -\frac{1}{2}(0) + 1 = 1 \\
\text{so } (0, 1)
\]

\[
x : \text{intercept : } y = 0 \\
0 = y = -\frac{1}{2}x + 1 \\
-1 = -\frac{1}{2}x \\
2 = x \\
(2, 0)
\]
(c) (4 pts) On the axes provided, sketch the graph of

\[y = g(x) = \begin{cases}
 x^2 & \text{for } x < 0 \\
 -\frac{1}{2}x + 1 & \text{for } x \geq 2.
\end{cases} \]

(d) (4 pts) Find the domain and the range of the function \(g(x) \) defined above. Put your answers in the boxes provided and in interval notation.

Domain: \((-\infty, 0) \cup [2, \infty)\)

Since \(x \) can be either \(x < 0 \) or \(x \geq 2 \),

Range: \((-\infty, \infty)\)

Project graph in part (c) to the \(y \)-axis to see range is all \((-\infty, \infty)\).