(3) Let \(\{a_n\} \) be a sequence of extended real numbers. \(L \in [-\infty, \infty] \) is said to be a limit point of the sequence if there is a subsequence \(a_{n_k} \) so that \(\lim_{k \to \infty} a_{n_k} = L \). Show that \(\inf \sup_{n \geq k} a_n \) is equal to the supremum of the set of limit points of \(\{a_n\} \). This quantity is defined as \(\limsup a_n \). Show that \(\limsup a_n \) is a limit point of \(\{a_n\} \).

Hint: Here is one way to produce a convergent subsequence: If \(b_j \) is a sequence with values in \([a, \infty]\), then there is a convergent subsequence with limit in \([a, \infty]\). This is because \([a, \infty]\) is sequentially compact (as it is homeomorphic to the compact metric space \([0, 1]\)).

(4) The Heaviside function \(H(x) \) is defined to be the characteristic function \(\chi_{[0, \infty)} \).

(a) Show that there is no continuous function \(f \) that is equal to \(H \) almost everywhere.

Hint: If there were such an \(f \), consider an open neighborhood of \(f(0) \).

(b) Show that there is no sequence \(f_k \) of functions in \(C^0(\mathbb{R}) \) so that \(f_k \to H \) with respect to the \(L^\infty(\mathbb{R}) \) norm.

Hint: Prove the following fact: A complete subset of a metric space is closed.

(5) A function \(f : \mathbb{R}^d \to \mathbb{R} \) is said to vanish at infinity if \(\lim_{|x| \to \infty} f(x) = 0 \). Show that the closure in \(L^\infty(\mathbb{R}^d) \) of the set of continuous \(\mathbb{R} \)-valued functions with compact support on \(\mathbb{R}^d \) is equal to the set of continuous functions which vanish at infinity on \(\mathbb{R}^d \).

Hint: Construct a sequence \(\phi_n \) of continuous functions with compact support so that \(\phi_n \not\to 1 \) everywhere.