Homology and dynamics in quasi-isometric rigidity
Lecture Notes, Part III
Durham, July 7, 2003

Lee Mosher

These notes are available on
http://newark.rutgers.edu/~mosher/

July 7, 2003
Last time: Proving that quasi-isometries coarsely preserve fibers

Given:
- fiber bundle $F \to E \to B$, with fiber F_x over each $x \in B$.
 - $d = \dim(B)$, $n = \dim(F)$, $d + n = \dim(E)$.
- E, B are UC, ULF simplicial complexes
- π is a simplicial map.
- Each fiber F_x is a manifold, of dimension n.
- For each vertex x, the subcomplex F_x is UC, with gauge independent of x.
- Top dimensional, uniformly finite homology classes in B coarsely separate points.
Here is a definition of the last property (the definition I gave in the lecture for Part II was a tad too strong, and is now replaced by a more appropriate, weaker form of the definition):

Top-d classes in \(H_d^{uf}(B) \) **coarsely separate points:**

\[\exists r > 0 \text{ so that } \forall s > 0 \exists D > 0 \text{ so that:} \]

for any \(x, y \in B \) with \(d(x, y) > D \), there is a top dimensional class \(c \in H_d^{uf}(B) \) such that

\[
d(\text{supp}(c), x) \leq r \quad \text{and} \quad d(\text{supp}(c), y) > s
\]

With this definition, what was proved last time was:

Theorem 1 (Whyte). If top dimensional classes in \(B \) coarsely separate points, then quasi-isometries of \(E \) coarsely preserve fibers.
Mapping class groups

Today: I'll explain Whyte's method for using Mess subgroups of mapping class groups to verify that quasi-isometries of $\text{MCG}(S^1_g)$ do, indeed, coarsely preserve fibers.

- There is a short exact sequence
 \[1 \to \pi_1(S_g) \to \text{MCG}(S^1_g) \to \text{MCG}(S_g) \to 1 \]

- $\text{MCG}(S^1_g) \to \text{MCG}(S_g)$ is the map that “forgets the puncture.

- $\pi_1(S_g) \to \text{MCG}(S^1_g)$ is the “push” map, which isotopes the base point around a loop, at the end of the isotopy defining a map of S_g taking the base point to itself; then remove the base point to define a mapping class on S^1_g.

Theorem 2. Every quasi-isometry of $\text{MCG}(S^1_g)$ coarsely preserves the system of cosets of $\pi_1(S_g)$.
Proof: Strategy: represent the short exact sequence by a fibration

\[\mathbb{H}^2 \to E \to B \]

as above, where

- \(E = \) model space for \(\mathcal{MCG}(S^1_g) \),

- \(B = \) model space for \(\mathcal{MCG}(S_g) \)

Translation of the theorem: every quasi-isometry of \(E \) coarsely preserves the fibers.

- Applying Whyte’s theorem, suffices to prove:

 - Top dimensional classes in \(B \) coarsely separate points.
Dimension of $\mathcal{MCG}(S_g)$. One would expect that the top dimension in which $H_n^{uf}(G')$ is nontrivial would be

$$n = \text{vcd}(G')$$

So we need the following formula of John Harer:

$$\text{vcd}(\mathcal{MCG}(S_g)) = 4g - 5$$

Harer’s proof of the upper bound: $\text{vcd}(\mathcal{MCG}(S_g)) \leq 4g - 5$.

From the short exact sequence, in which

$$\text{cd(kernel)} = \dim(H^2) = 2$$

it suffices to prove

$$\text{vcd}(\mathcal{MCG}(S^1_g)) \leq 4g - 3$$

Harer constructs a contractible complex of dimension $4g - 3$ which is a model space for $\mathcal{MCG}(S^1_g)$: the complex of “filling arc systems” of the once punctured surface.
Remarks:

- Harer does not directly construct a $4g - 3$ dimensional model space for $\mathcal{MCG}(S_g)$.
- Thurston, in his 3 page 1986 preprint “A spine for the Teichmüller space of a closed surface”, does construct a model space for $\mathcal{MCG}(S_g)$.
- With some work, I can prove Thurston’s spine in genus 2 is indeed equal to $4g - 5 = 8 - 3 = 3$.
- But I am unable to prove that Thurston’s spine in genus ≥ 3 has dimension $4g - 5$, and I think it may be false.
- Ultimately we will depend on the Eilenberg-Ganea-Wall theorem, which is why we need to compute the vcd.
Geoff Mess’ proof of the lower bound:

\[\text{vcd}(\mathcal{MCG}(S_g)) \geq 4g - 5 \]

\exists \text{ subgroup } M_g < \mathcal{MCG}(S_g) \text{ which is PD of dimension } 4g - 5, \text{ in fact, } M_g = \pi_1 \text{ of a compact, aspherical } 4g - 5 \text{ manifold: a Mess subgroup of } \mathcal{MCG}(S_g).

Construction of Mess subgroups by induction on genus.

Base case: Genus 2

- With \(g = 2 \), we have \(4g - 5 = 3 \), so we need a 3-dimensional subgroup of \(\mathcal{MCG}(S_2) \).

- Take a curve family \(\{c_1, c_2, c_3\} \subset S_2 \) consisting of three pairwise disjoint, pairwise nonisotopic curves. The Dehn twists about \(c_1, c_2, c_3 \) generate a rank 3 free abelian group.
• Up to the action of $\mathcal{MCG}(S_2)$, there are two orbits of such curve families, depending on whether or not some curve in the family separates. So, there are two conjugacy classes of Mess subgroups in $\mathcal{MCG}(S_2)$.

Induction step:

• Let $M_{g-1} = \text{Mess subgroup in } \mathcal{MCG}(S_{g-1})$.

• So, M_{g-1} is a PD group of dimension $4(g - 1) - 5$.

• Consider the SES

$$1 \rightarrow \pi_1(S_{g-1}) \rightarrow \mathcal{MCG}(S_{g-1}^1) \rightarrow \mathcal{MCG}(S_{g-1}) \rightarrow 1$$

• Let $M'_{g-1} = \text{preimage of } M_{g-1}$, so we get

$$1 \rightarrow \pi_1(S_{g-1}) \rightarrow M'_{g-1} \rightarrow M_{g-1} \rightarrow 1$$
• So, M'_{g-1} is PD of dimension $4(g - 1) - 5 + 2$.

• Let $S_{g,1} = \text{surface } S_g \text{ with a hole removed, and with one boundary component.}$

• There is a central extension

$$1 \to \mathbb{Z} \to \text{MCG}(S_{g,1}) \to \text{MCG}(S^1_g) \to 1$$

obtained by collapsing the hole to a puncture.

• Let $M''_{g-1} = \text{preimage of } M'_{g-1}$, and we get

$$1 \to \mathbb{Z} \to M''_{g-1} \to M'_{g-1} \to 1$$

• So, M''_{g-1} is PD of dimension $4(g - 1) - 5 + 3$.

• Attach a handle (a one-holed torus) to $S_{g,1}$ to get S_{g+1}, so we get an embedding

$$\text{MCG}(S_{g,1}) \to \text{MCG}(S_{g+1})$$
• Pick a simple closed curve c in the handle, so the Dehn twist τ_c commutes with $\mathcal{MCG}(S_g,1)$.

• Let $M_g = M''_{g-1} \times \langle \tau_c \rangle$.

• So, M_g is PD of dimension $4(g-1) - 5 + 4 = 4g - 5$.

This finishes Mess’ proof that $\text{vcd}(\mathcal{MCG}(S_g)) \geq 4g - 5$.

Remarks:

• The construction of M_g is completely determined by the isotopy type of a certain filtration of S_g by sub-surfaces.

• There are only finitely many such isotopy types up to the action of \mathcal{MCG}, and so there are only finitely many conjugacy classes of Mess subgroups.

• Let $\text{Stab}(c)$ be the stabilizer group of the closed curve c picked in the last step, and so we have

$$M_g \subset \text{Stab}(c)$$
Model spaces

• Trick: for the moment, we won’t actually work with a model space for $\mathcal{MCG}(S_g)$, instead we’ll work with a model space for a finite index, torsion free subgroup $\Gamma_g < \mathcal{MCG}(S_g)$. This is OK because the inclusion $\Gamma_g \hookrightarrow \mathcal{MCG}(S_g)$ is a quasi-isometry.

• Reason for doing this: we need a contractible model space of the correct dimension $4g - 5$. Don’t know this exists for $\mathcal{MCG}(S_g)$, but it does exist for Γ_g, by standard results.

• Pick a torsion free, finite index subgroup $\Gamma_g < \mathcal{MCG}(S_g)$, and so

$$\text{cd}(\Gamma) = 4g - 5$$

• By the Eilenberg-Ganea-Wall theorem, there exists a model space E for Γ_g of dimension $4g - 5$.
Given a Mess subgroup $M < \mathcal{MCG}(S_g)$, the intersection

$$M' = M \cap \Gamma_g$$

has finite index in M.

So, M' is still PD of dimension $4g - 5$.

The complex E/M' is a $K(M', 1)$ space of dimension $4g - 5$.

So, the (ordinary) fundamental class of $H_{4g-5}(M')$ is represented by a unique $4g - 5$ cycle in E/M'.

This cycle lifts to a $4g - 5$ dimensional, uniformly finite cycle in E; call this a Mess cycle in E.

It suffices to prove that the collection of Mess cycles coarsely separates points in E.

Passage to left cosets

- We now pass from Mess cycles to left cosets of Mess subgroups, as follows.

- Although \mathcal{MCG} does not act on E, it does quasi-act, which is good enough.

- The quasi-action of \mathcal{MCG} permutes the Mess cycles.

- There is a bijection between Mess subgroups and Mess cycles: each Mess subgroup M corresponds to a unique Mess cycle c such that M (coarsely) stabilizes c.

- If M (coarsely) stabilizes c and if $\phi \in \mathcal{MCG}(S_g)$ then $\phi M \phi^{-1}$ (coarsely) stabilizes $\phi(c)$.
• Pick representatives M_1, \ldots, M_k of the finitely many conjugacy classes of Mess subgroups.

• Follows that, under the quasi-isometry $E \to \mathcal{MCG}(S_g)$, Mess cycles correspond to left cosets in $\mathcal{MCG}(S_g)$ of M_1, \ldots, M_k.

• So, it suffices to show that left cosets of M_1, \ldots, M_k coarsely separate points in $\mathcal{MCG}(S_g)$.
Passage to curve stabilizers

- Each Mess subgroup \(M_i \) fixes some curve \(c_i \), and so \(M_i < \text{Stab}(c_i) \).

- Thus, each left coset of \(M_i \) is contained in a left coset of \(\text{Stab}(c_i) \).

- So, choosing curves \(c_0, \ldots, c_n \) representing the orbits of simple closed curves, it suffices to prove that the left cosets of the groups \(\text{Stab}(c_i) \) coarsely separate points in \(\text{MCG} \).
New model space

- We now switch to a new model space Γ, no longer contractible. We will pass from left cosets of the groups $\text{Stab}(c_i)$ to subsets of the new model space Γ.

- Model space: a graph Γ. Vertices are pairs (C, D) where each of C, D is a pairwise disjoint curve system, the systems C, D jointly fill the surface, and each component of $S - (C \cup D)$ is a hexagon. This implies that MCG acts on the vertex set with finitely many orbits.

- Since MCG is finitely generated, and since there are finitely many orbits of vertices, it follows that we can attach edges in an MCG-equivariant way so that the graph Γ is connected and has finitely many orbits of edges. There’s probably some nice scheme for attaching edges, based on low intersection numbers,
but it’s not necessary. The graph Γ is now quasi-isometric to \mathcal{MCG}.

- Given a curve c, define Γ_c to be the subgraph of Γ spanned by vertices (C, D) such that $c \in C \cup D$.

- Passing from left cosets of curve stabilizers to the sets Γ_c, our ultimate goal is to show that the system of subgraphs Γ_c, one for each curve c, coarsely separates points in Γ.

- Given vertices (C, D) and (C', D') which are very far from each other, I’ll pick a curve c in $C \cup D$ and show that (C', D') is far from Γ_c. This is enough, because (C, D) is actually in Γ_c.
Since \((C, D)\) and \((C', D')\) are very far from each other, there exists \(c \in C \cup D\) and \(c' \in C' \cup D'\) such that the intersection number \(<c, c'>\) is very large (Proof: fixing \((C, D)\), if all such intersection numbers \(<c, c'>\) are uniformly small, then there is a uniform cardinality to the number of possible \((C', D')\), so the distance from \((C, D)\) to \((C', D')\) is uniformly bounded).

Consider now any curve system \((C_1, D_1)\) in \(\Gamma_c\), meaning that \((C_1, D_1)\) contains \(c\). The curve \(c \in C_1 \cup D_1\) has very large intersection number with the curve \(c' \in C' \cup D'\). It follows that \((C_1, D_1)\) and \((C', D')\) are far from each other (Proof: if \((C_1, D_1)\) and \((C', D')\) are close, there is a uniform bound to the intersection number of a curve in \(C_1 \cup D_1\) with a curve in \((C', D')\).

This completes the proof that quasi-isometries of \(\mathcal{MCG}(S^1_g)\) coarsely preserve fibers.