TOWARDS THE PROOF OF HOWE DUALITY.
NOTES FOR A TALK AT RUTGERS, 30 DEC. 2011

YIANNIS SAKELLARIDIS

Abstract. I present the “soft” part of the proof of Howe duality, reducing it to a hard, explicit statement about generators of a subspace of invariants in the oscillator representation. The reference is Chapter 5 of the book of Moeglin–Vignéras–Waldspurger.

Contents

1. The lattice model 1
2. Compatible lattices 2
3. The main theorem 3
4. Deduction of Howe duality 3

1. The lattice model

We will only discuss the unramified case, i.e. we are given finite-dimensional vector spaces W_1, W_2 over a non-archimedean field F (with ring of integers \mathfrak{o}), non-degenerate symmetric, resp. alternating forms on each of them (no matter which), and assume that there are self-dual sublattices L_1, L_2, respectively, which we fix.

Let $W = W_1 \otimes_F W_2$, $L = L_1 \otimes_{\mathfrak{o}} L_2$. Fix a character $\psi : F \to \mathbb{C}^\times$ with conductor \mathfrak{o}. Then the dual of a lattice $M \subset W$ can be described either as the set of elements $w \in W$ such that $\langle w, M \rangle \subset \mathfrak{o}$, or, equivalently, as the set of elements with $\psi(\langle w, M \rangle) = \{1\}$.

Consider the Heisenberg group $H = W \rtimes F$, and let \tilde{M} be the inverse image of any subgroup $M \subset W$. We extend the character ψ to a character ψ_L of \tilde{L} by setting it equal to 1 on L (it is a character because of self-duality and the choice of conductor for ψ).

Consider the representation $(\rho, \mathcal{S}) := \text{Ind}^H_L(\psi_L)$ (smooth induction). For any $w \in W$ we will denote by s_w the element of \mathcal{S} which is supported on the L-coset of w, and equal to 1 on w.

1.0.1. Proposition. (1) Elements of \mathcal{S} are compactly supported modulo \tilde{L} (hence modulo the center).
(2) The representation is irreducible.
Proof. (1) Let $f \in \mathcal{S}^M$, where M is a sublattice of L, then the character $w \psi_L$ (by which M acts on s_w) is trivial on M if and only if $w \in M^\vee$.
(2) Let $f \in \mathcal{S}^M$ and $w \in W$. We need to show that s_w is in the H-span of f. By translating, we may assume that $w = 0$ and $f(0) \neq 0$. If 1_L denotes the characteristic measure of L, then:
\[
\rho(1_L)(f)(w) = \int_L f(wl)dl = \int_L \psi(\langle w, l \rangle) f(w)dl = \int_L \psi(\langle w, l \rangle) f(w)dl = f(w) \cdot \int_L \psi(\langle w, l \rangle) dl = \begin{cases}
 f(w) & \text{if } w \in L, \\
 0 & \text{otherwise.}
\end{cases}
\]

The Weil representation (ω, \mathcal{S}) (for a \mathbb{C}^\times-cover \tilde{G} of $G = \text{Sp}(W)$, acting on W on the right) is given on a section of G by the formula:
\[
\omega(g)f(w) = \sum_{l \in L/L(g \cap L)} \psi\left(\frac{\langle l, w \rangle}{2}\right) f((l + w)g). \tag{1.1}
\]

In particular, for $g \in K :=$ the stabilizer of L we have:
\[
\omega(g)f(w) = f(wg).
\]

2. Compatible lattices

Our goal is to define a system of open compact neighborhoods of the identity in G_1 using sublattices of L_1, and then describe, for each such lattice M_1, some “corresponding” lattices M_2 which give, similarly, compact neighborhoods of the identity in G_2. The idea being, roughly, that representations with $J_1(M_1)$-invariant vectors will correspond under Howe duality to representations with $J_2(M_2)$-invariant vectors (where J_i denotes the subgroup corresponding to M_i).

More precisely, we define, for every sublattice $M_1 \subset L_1$:
\[
J_1(M_1) = \{ g \in G_1 | (g - 1)M_1^\vee \subset M_1 \},
\]
\[
H_1(M_1) = \{ g \in G_1 | (g - 1)M_1^\vee \subset L_1 \}.
\]

Whenever there is no confusion about M_1, we write simply J_1, H_1. Notice that $J_1, H_1 \subset K_1$.

We also set:
\[
B_1(M_1) = M_1^\vee \otimes L_2 \subset W.
\]

The subgroups above are convenient, because we can compute the action of J_1 and H_1 on s_w when $w \in B_1(M_1)$:

2.0.2. Lemma. For $w \in B_1(M_1)$ the vector s_w is an eigenvector for H_1, and invariant under J_1.

Proof. Recall that K_1 acts on S simply by right translations. The L-coset of w is preserved by H_1:

$$w \cdot h - w = w(h - 1) \quad w \in M_1^\vee \otimes L_2 \quad w \cdot h - w \in L_1 \otimes L_2 = L.$$

Hence, s_w is an eigenvector for H_1.

A similar calculation shows that $w \cdot h - w \in M_1 \otimes L_2$, and since $w \in M_1^\vee \otimes L_2 = (M_1 \otimes L_2)^\vee$, we see as in the first part of Proposition 1.0.1 that s_w is invariant by J_1. \square

These vectors $s_w, w \in B_1(M_1)$, and our ability to compute the action of these subgroups on them will be the basis of the whole argument.

Facts: The subgroups $J_1(M_1)$, as M_1 ranges over a system of neighborhoods of the identity in W, form a system of neighborhoods of the identity in G_1. The quotient $H_1(M_1)/J_1(M_1)$ is abelian.

Now, given M_1 we want to define a corresponding lattice $M_2 \subset L_2$. It will not be unique. We call an element $w \in B_1(M_1)$ extreme if there is no intermediate lattice M between M_1 and L_1 such that $w \in B_1(M)$. Then there is a unique lattice $M_2 \subset L_2$ such that w is also “extreme” in $B_2(M_2)$ (defined analogously).

Via the dualities induced by the pairings, we can view the space W as $\text{Hom}(W_1, W_2)$ or as $\text{Hom}(W_2, W_1)$. Then the above condition on w is equivalent to saying that $w(L_2) + L_1 = M_1^\vee$. Now we set:

$$M_2 := (w(L_1) + L_2)^\vee. \quad (2.1)$$

Analogously, we define $J_2(M_2)$ and $H_2(M_2)$.

The indices of the lattices M_1, M_2 in L_1, L_2 are very closely related, namely:

2.0.3. Lemma. Let $w \in W$, then $|L_1/(w(L_2) + L_1)^\vee| = |L_2/(w(L_1) + L_2)^\vee|$.

3. The main theorem

Consider the subspace S_{M_1} of S consisting of elements which are supported on $B_1(M_1)$. The main results are:

3.0.4. Proposition. If w, w' are “extreme” in $B_1(M_1)$ and the H_1-eigencharacters $\psi_w, \psi_{w'}$ of s_w and s_w' coincide then there is $k \in K_2$ such that $w \equiv w'k \mod L$.

3.0.5. Theorem. S^{H_2} is generated by S_{M_1} under the action of the (full) Hecke algebra H_2 of M_2.

These results require lengthy, explicit calculations in the lattice model and I will not prove them (until I find the courage to read them and understand something about them). Notice, however, that Howe presents a more conceptual proof of a slightly different result in Part I of the Piatetski-Shapiro “Festschrift”. This is probably the way to go.
4. Deduction of Howe Duality

Howe duality can be stated as follows:

4.0.6. Theorem. Let π_1 be an irreducible representation of G_1 and $S[\pi_1] \simeq \pi_1 \otimes V_2$ the maximal semisimple π_1-isotypic quotient of S. Then V_2 has a unique irreducible quotient.

Remark. Although we don’t really need an isomorphism of the form: $S[\pi_1] \simeq \pi_1 \otimes V_2$, let me explain where it comes from: If everything was finite dimensional, we would be able to say that $V_2 = (\text{Hom}_{G_1}(S, \pi_1))^\ast$ (linear dual), and the map $S \rightarrow V_2$ would be just the natural:

$$S \rightarrow \text{Hom}_C(\text{Hom}_{G_1}(S, \pi_1), \pi_1) \simeq \pi_1 \otimes (\text{Hom}_{G_1}(S, \pi_1))^\ast,$$

which we can easily show to be surjective.

In the infinite-dimensional case, things are not quite so: the map (*) is still defined, but it’s something like taking double dual, for instance if G_1 acts trivially on S and π_1 is the trivial representation. Moreover, the map (**) is not an isomorphism, but rather an injection from the right to the left, with image those homomorphisms (into π_1) of finite-dimensional range.

Since S is smooth and π_1 is admissible, we can see that the image of S indeed lies in $\pi_1 \otimes (\text{Hom}_{G_1}(S, \pi_1))^\ast$, but this is still not an isomorphism (for instance, the elements of $(\text{Hom}_{G_1}(S, \pi_1))^\ast$ are not G_2-smooth, but even if we take the G_2-smooth subspace we don’t see anywhere the condition that elements of S are actually G-smooth). To show that there is a subspace V_2 such that the image of S lies in V_2, take a smooth linear functional $l \in \tilde{\pi_1}$ and let V_2 be the image of S under:

$$S \rightarrow \pi_1 \otimes (\text{Hom}_{G_1}(S, \pi_1))^\ast \rightarrow (\text{Hom}_{G_1}(S, \pi_1))^\ast.$$

Since $\tilde{\pi_1}$ is irreducible and hence $C[G_1]$ acts transitively on its non-zero vectors, this image does not depend on the choice of l. It can then easily be seen that the image of S in $\pi_1 \otimes (\text{Hom}_{G_1}(S, \pi_1))^\ast$ is equal to $\pi_1 \otimes V_1$.

Let $M_1 \subset L_1$ be maximal such that π_1 has a non-zero M_1-invariant vector. Let S_1 be the quotient of S by the subrepresentation generated by all $J_1(M)$-invariants, with $M_1 \subseteq M \subset L_1$, and consider the quotient map $p : S \rightarrow S_1$.

4.0.7. Lemma. If $w \in B_1(M_1)$ is not “extreme” then $p(s_w) = 0$.

Proof. Indeed, then $w \in M^\vee \otimes L_2$, which implies that s_w is invariant by $J_1(M)$.

4.0.8. Corollary. The only H_1/J_1-eigencharacters which appear in $S_1^{J_1}$ are those of the form ψ_w, with w “extreme” in $B_1(M_1)$. For any “extreme” element $w \in B_1(M_1)$, the space: $S^{(H_1, \psi_w)}$ is generated by s_w over \mathcal{H}_2.

Proof. Indeed, by the lemma the first statement is true for the subspace which is the image of $S_1^{J_1}$, but this generates $S_1^{J_1}$ over \mathcal{H}_2, by the Theorem. The second statement follows from Proposition 3.0.4. □
Now we fix such an “extreme” \(w \), the corresponding character \(\psi_1 = \psi_w \) of \(H_1 \), and consider the analogous data for \(G_2 \): \(M_2, J_2, H_2, \) and \(\psi_2 \) a character of \(H_2 \). Let \(e_i \) \((i = 1, 2) \) be the idempotents in \(\mathcal{H}_1, \mathcal{H}_2 \) which project to \((H_i, \psi_i)\)-equivariant vectors, and let \(\overline{\mathcal{H}_i} = e_i \mathcal{H}_i e_i \). Notice that, \(s_w \) is an \(H_1 \times H_2 \)-eigenvector with eigencharacter \(\psi_1 \times \psi_2 \).

We have almost proven duality: for any irreducible representation \(\pi_1 \) of \(G_1 \) we can find such data \(M_i, J_i, H_i, w, \psi_i \) so that \(\pi_1^{(H_1, \psi_1)} \neq 0 \), and then it follows from the above that \(S[\pi_1]^{(H_1, \psi_1)} \) will be generated over \(\mathcal{H}_2 \) by the image of \(s_w \). In particular, every (non-zero) \(G_2 \)-equivariant quotient of \(S[\pi_1]^{(H_1, \psi_1)} \) will have non-zero \((H_2, \psi_2)\)-equivariant vectors.

We can now prove:

4.0.9. **Proposition.**

\[
S_{1}^{(H_1 \times H_2, \psi_1 \times \psi_2)} = \overline{\mathcal{H}_1} \cdot p(s_w) = \overline{\mathcal{H}_2} \cdot p(s_w).
\]

Proof. The equality with \(\overline{\mathcal{H}_2} \cdot p(s_w) \) has already been proven. The equality with \(\overline{\mathcal{H}_1} \cdot p(s_w) \) follows from the same steps, once we prove:

4.0.10. **Lemma.** If \(w \in B_2(M_2) \) is not extreme, then \(s_w \) has zero image in \(S_1 \).

Recall that this is the case for \(w \in B_1(M_1) \) which are not extreme, by maximality of \(M_1 \), and this was the only place where maximality of \(M_1 \) was used.

Proof of the lemma. If \(M'_2 = (w(L_1) + L_2)^{\vee} \) then \(M_2 \subseteq M_2 \subset K_2 \), and if \(M'_1 = (w(L_2) + L_1)^{\vee} \) then \(M_1 \subset M'_1 \subset K_1 \). By Lemma 2.0.3, \(M_1 \neq M'_1 \), hence \(p(s_w) = 0 \) because \(s_w \) is \(M'_1 \)-invariant. \(\square \)

Howe duality now follows: for a complex vector space \(V \), commuting subalgebras \(A, B \) of \(\text{End}(V) \) and an element \(v \in V \) such that \(Av = Bv = V \), \(A \) and \(B \) should be each other’s commutators. In particular, no quotient of \(V \) can admit a non-trivial direct sum \(A \)-decomposition (because projection to one summand is in the commutator of \(A \), contradicting the fact that it’s generated over \(B \) by the image of \(v \).)