EXPLOSIVE BEHAVIOR IN THE 1990s NASDAQ: WHEN DID EXUBERANCE ESCALATE ASSET VALUES?*

BY PETER C. B. PHILLIPS, YANGRU WU, AND JUN YU1

Yale University, University of Auckland, University of Southampton, and Singapore Management University; Rutgers University and Central University of Finance and Economics (Chinese Academy of Finance and Development); Singapore Management University

A recursive test procedure is suggested that provides a mechanism for testing explosive behavior, date stamping the origination and collapse of economic exuberance, and providing valid confidence intervals for explosive growth rates. The method involves the recursive implementation of a right-side unit root test and a sup test, both of which are easy to use in practical applications, and some new limit theory for mildly explosive processes. The test procedure is shown to have discriminatory power in detecting periodically collapsing bubbles, thereby overcoming a weakness in earlier applications of unit root tests for economic bubbles. An empirical application to the Nasdaq stock price index in the 1990s provides confirmation of explosiveness and date stamps the origination of financial exuberance to mid-1995, prior to the famous remark in December 1996 by Alan Greenspan about irrational exuberance in the financial market, thereby giving the remark empirical content.

How do we know when irrational exuberance has unduly escalated asset values? (Alan Greenspan, 1996)

Experience can be a powerful teacher. The rise and fall of internet stocks, which created and then destroyed $8 trillion of shareholder wealth, has led a new generation of economists to acknowledge that bubbles can occur. (Alan Krueger, 2005)

1. INTRODUCTION

During the 1990s, led by DotCom stocks and the internet sector, the U.S. stock market experienced a spectacular rise in all major indices, especially the Nasdaq index. Concomitant with this striking rise in stock market indices, there was much popular talk among economists about the effects of the internet and computing technology on productivity and the emergence of a “new economy” associated with these changes. What caused the unusual surge and fall in prices, whether there were bubbles, and whether the bubbles were rational or behavioral are among the most actively debated issues in macroeconomics and finance in recent years.

*Manuscript received July 2008; revised August 2009.
1 The authors thank the co-editor, three anonymous referees, Yacine Aït-Sahalia, Geert Bekaert, Prasad Bidarkota, Markus Brunnermeier, Robert Flood, George Furstemberg, Peter Garber, Hans Genberg, Adrian Pagan, Lubos Pastor, Michael Robert, Dragon Tang, Pietro Veronesi, Matthew Yiu, and conference/seminar participants at Econometric Society Winter Meetings, Financial Management Association Meeting, the Fundamental and Nonfundamental Asset Pricing Dynamics Conference in Norway, Hong Kong Institute for Monetary Research (HKIMR), Financial Engineering and Risk Management 2007 Meeting, International Symposium for Econometric Theory and Application 2009 Meeting, National University of Singapore, Central University of Finance and Economics (CUFE), Rutgers, and University of Toronto for comments. All errors remain our responsibility. Phillips gratefully acknowledges partial support from a Kelly Fellowship and the NSF under Grant Nos. SES 04-142254 and SES 06-47086. Yu gratefully acknowledges financial support from the Singapore Ministry of Education AcRF Tier 2 fund under Grant No. T206B4301-RS. Part of this work was completed while Wu visited HKIMR and CUFE. He thanks these institutions for their warm hospitalities. He thanks a faculty research grant from Rutgers Business School and the Whitcomb Financial Services Center for partial financial support. Please address correspondence to: Jun Yu, School of Economics and Sim Kee Boon Institute for Financial Economics, Singapore Management University, Singapore 178903, Singapore. E-mail: yujun@smu.edu.sg.
Many researchers attribute the episode to financial bubbles. Examples include Greenspan (1996), Thaler (1999), Shiller (2000), The Economist (2000), Cooper et al. (2001), Ritter and Welch (2002), Ofek and Richardson (2002), Lamont and Thaler (2003), and Cunado et al. (2005). Among the many references, the remark by Greenspan (1996) on December 5, 1996, is the most celebrated, involving as it did the coining of the phrase “irrational exuberance” to characterize herd stock market behavior, a phrase that remains the most oft-quoted remark of the former chairman of the Federal Reserve Board. The remark has been influential in thinking about financial markets and herd behavior, and it also had some short-term market effects. Indeed, immediately after Greenspan coined the phrase in a dinner party speech, stock markets fell sharply worldwide the next day. However, in spite of this correction, the Greenspan remark did not halt the general upward march of the United States market. On the contrary, over the full decade of the 1990s, the Nasdaq index rose to the historical high of 5,048.62 points on March 10, 2000 from 329.80 on October 31, 1990 (see Figure 1).

One purpose of the present article is to examine empirically the Nasdaq market performance in relation to the market perceptions of exuberance by Greenspan and other commentators. In particular, it is of interest to determine whether the Greenspan perception of exuberance was supported by empirical evidence in the data or if Greenspan actually foresaw the outbreak of exuberance and its dangers when he made the remark. To achieve this goal, we first define financial exuberance in the time series context in terms of explosive autoregressive behavior and then introduce some new econometric methodology based on forward recursive regression tests and mildly explosive regression asymptotics to assess the empirical evidence of exuberant behavior in the Nasdaq stock market index. In this context, the approach is compatible with several different explanations of this period of market activity, including the rational bubble literature, herd behavior, and exuberant and rational responses to economic fundamentals. All these propagating mechanisms can lead to explosive characteristics in the data. Hence, the empirical issue becomes one of identifying the origination, termination, and extent of

2 Some economists have also sought to rationalize the equity boom using a variety of economic variables, including uncertainty about firm profitability (P´astor and Veronesi, 2006), declining macroeconomic risk (Letttau et al., 2008), high and volatile revenue growth (Schwartz and Moon, 2000), learning (P´astor and Veronesi, 2009), and other fundamentals.

3 For example, the stock markets in Frankfurt, Hong Kong, London, Toyko, and the United States fell by 4%, 3%, 4%, 3%, and 2%, respectively.
the explosive behavior. Although with traditional test procedures “there is little evidence of explosive behavior” (Campbell et al., 1997, p. 260), with the recursive procedure, we successfully document explosive periods of price exuberance in the Nasdaq.

Among the potential explanations of explosive behavior in economic variables, the most prominent are perhaps models with rational bubbles. Accordingly, we relate our analysis of explosive behavior to the rational bubble literature, where it is well known that standard econometric tests encounter difficulties in identifying rational asset bubbles (Flood and Garber, 1980; Flood and Hodrick, 1986; Evans, 1991). The use of recursive tests enables us to locate exploding subsamples of data and detect periods of exuberance. The econometric approach utilizes some new machinery that permits the construction of valid asymptotic confidence intervals for explosive autoregressive processes and tests of explosive characteristics in time series data. This approach can detect the presence of exuberance in the data and date stamp the origination and collapse of periods of exuberance.

We apply our econometric approach to the Nasdaq index over the full sample period from 1973 to 2005 and some subperiods. Using the forward recursive regression technique, we date stamp the origin and conclusion of the explosive behavior. To answer the question raised by Greenspan in the first epigraph in this article, we match the empirical time stamp of the origination against the dating of Greenspan’s remark. The statistical evidence from these methods indicates that explosiveness started in 1995, thereby predating and providing empirical content to the Greenspan remark in December 1996. The empirical evidence indicates that the explosive environment continued until sometime between September 2000 and March 2001.

If the discount rate is time invariant, the identification of explosive characteristics in the data is equivalent to the detection of a stock bubble, as argued in Diba and Grossman (1987, 1988). Using standard unit root tests applied to real U.S. Standard and Poor’s Composite Stock Price Index data over the period 1871–1986, Diba and Grossman (1988) tested levels and differences of stock prices for nonstationarity, finding support in the data for nonstationarity in levels but stationarity in differences. Since differences of an explosive process still manifest explosive characteristics, these findings appear to reject the presence of a market bubble in the data. Although the results were less definitive, further tests by Diba and Grossman (1988) provided confirmation of cointegration between stock prices and dividends over the same period, supporting the conclusion that prices did not diverge from long-run fundamentals and thereby giving additional evidence against bubble behavior. Evans (1991) criticized this approach, showing that time series simulated from a nonlinear model that produces periodically collapsing bubbles manifests more complex bubble characteristics that are typically not uncoverable by standard unit root and cointegration tests. He concluded that standard unit root and cointegration tests are inappropriate tools for detecting bubble behavior because they cannot effectively distinguish between a stationary process and a periodically collapsing bubble model. Patterns of periodically collapsing bubbles in the data look more like data generated from a unit root or stationary autoregression than a potentially explosive process. Recursive tests of the type undertaken in our article are not subject to the same criticism and, as demonstrated in our analysis and simulations reported below, are capable of distinguishing periodically collapsing bubbles from pure unit root processes.

The remainder of the article is organized as follows. Section 2 defines market exuberance, discusses model specification issues, and relates exuberance to the earlier literature on rational bubbles. Section 3 discusses some econometric issues, such as finite sample estimation bias and the construction of valid asymptotic confidence intervals for mildly explosive processes. Section 4 describes the data used in this study. The empirical results are reported in Section 5. Section 6 documents the finite sample properties of our tests and develops some asymptotic properties of the Evans (1991) model of periodically collapsing bubbles. Simulations with these models are conducted and the finite sample properties of the tests are analyzed. Section 7 concludes. The Appendix provides a mathematical analysis of the periodically collapsing bubble model of Evans.
When Greenspan coined “irrational exuberance,” the phrase was not defined—see the first epigraph in this article. Instead, the appellation can be interpreted as a typically cryptic warning that the market might be overvalued and in risk of a financial bubble. In the event, as the second epigraph in this article indicates, the subsequent rise and fall of internet stocks to the extent of $8 trillion of shareholder wealth renewed a long-standing interest among economists in the possibility of financial bubbles. Theoretical studies on rational bubbles in the stock market include Blanchard (1979), Blanchard and Watson (1982), Shiller (1984), Tirole (1982, 1985), Evans (1989), Evans and Honkapohja (1992), and Olivier (2000), among many others, and empirical studies include Shiller (1981), West (1987, 1988), Campbell and Shiller (1987, 1989), Diba and Grossman (1988), Froot and Obstfeld (1991), and Wu (1997). Flood and Hodrick (1990) and Gurkaynak (2005) survey existing econometric methodologies and test results for financial bubbles.

It is well known in the rational bubble literature that bubbles, if they are present, should manifest explosive characteristics in prices. This statistical property motivates a definition of exuberance in terms of explosive autoregressive behavior propagated by a process of the form
\[x_t = \mu_x + \delta x_{t-1} + \epsilon_{x,t} \]
where for certain subperiods of the data \(\delta > 1 \). Figure 2 gives typical time series plots for stationary (\(\delta = 0.9 \)), random walk (\(\delta = 1.0 \)), and explosive processes (\(\delta = 1.02 \)) with intercept \(\mu_x = 0 \) and inputs \(\epsilon_{x,t} \sim \text{i.i.d.} \ N(0, 1) \). The differences in the trajectories are quite apparent.

The concept of rational bubbles can be illustrated using the present value theory of finance whereby fundamental asset prices are determined by the sum of the present discounted values of expected future dividend sequence. Most tests begin with the standard no arbitrage condition below:

\[P_t = \frac{1}{1 + R} E_t(P_{t+1} + D_{t+1}), \]

where \(P_t \) is the real stock price (ex-dividend) at time \(t \), \(D_t \) is the real dividend received from the asset for ownership between \(t-1 \) and \(t \), and \(R \) is the discount rate (\(R > 0 \)). This section assumes \(R \) to be time invariant. However, making the discount rate stationary and time-varying does not change the implication of submartingale (explosive) behavior given in (4) below, but complicates the analysis of the rational bubble solution.
We follow Campbell and Shiller (1989) by taking a log-linear approximation of (1), which yields the following solution through recursive substitution:

\[p_t = p_t^f + b_t, \]

where

\[p_t^f = \frac{\kappa - \gamma}{1 - \rho} + (1 - \rho) \sum_{i=0}^{\infty} \beta_i E_t(d_{t+1+i}), \]

\[b_t = \lim_{i \to \infty} \beta_i E_t p_{t+i}, \]

\[E_t(b_{t+1}) = \frac{1}{\rho} b_t = (1 + \exp(d - p)) b_t, \]

with \(p_t = \log(P_t), d_t = \log(D_t), \gamma = \log(1 + R) \rho = 1/(1 + \exp(d - p)) \), with \(d - p \) being the average log dividend–price ratio, and

\[\kappa = -\log(\rho) - (1 - \rho) \log \left(\frac{1}{\rho} - 1 \right). \]

Obviously, \(0 < \rho < 1 \). Following convention, we call \(p_t^f \), which is exclusively determined by expected dividends, the fundamental component of the stock price, and \(b_t \), which satisfies the difference equation (5) below, the rational bubble component. Both components are expressed in natural logarithms. As \(\exp(d - p) > 0 \), the rational bubble \(b_t \) is a submartingale and is explosive in expectation. Equation (4) implies the following process:

\[b_t = \frac{1}{\rho} b_{t-1} + \epsilon_{b,t} \equiv (1 + g) b_{t-1} + \epsilon_{b,t}, \quad E_{t-1}(\epsilon_{b,t}) = 0, \]

where \(g = \frac{1}{\rho} - 1 = \exp(d - p) > 0 \) is the growth rate of the natural logarithm of the bubble and \(\epsilon_{b,t} \) is a martingale difference.

As evident from (2), the stochastic properties of \(p_t \) are determined by those of \(p_t^f \) and \(b_t \). In the absence of bubbles, i.e., \(b_t = 0, \forall t \), we will have \(p_t = p_t^f \), and \(p_t \) is determined solely by \(p_t^f \) and hence by \(d_t \). In this case, from (3), we obtain

\[d_t - p_t = -\frac{\kappa - \gamma}{1 - \rho} - \sum_{i=0}^{\infty} \beta^i E_t(\Delta d_{t+1+i}). \]

If \(p_t \) and \(d_t \) are both integrated processes of order one, denoted by I(1), then (6) implies that \(p_t \) and \(d_t \) are cointegrated with the cointegrating vector \([1, -1]\).

If bubbles are present, i.e., \(b_t \neq 0 \), since (5) implies explosive behavior in \(b_t, p_t \) will also be explosive by Equation (2), irrespective of whether \(d_t \) is an integrated process, I(1), or a stationary process, denoted by I(0). In this case, \(\Delta p_t \) is also explosive and therefore cannot be

4 Although log-linear approximations of this type about the sample mean are commonly employed in both theoretical and empirical work, we remark that they may be less satisfactory in nonstationary contexts where the sample means do not converge to population constants. We therefore used the series both in log levels and in levels in our empirical work and found very similar results for both cases.
stationary. This implication motivated Diba and Grossman (1988) to look for the presence of bubble behavior by applying unit root tests to \(\Delta p_t \). Finding an empirical rejection of the null of a unit root in \(\Delta p_t \), Diba and Grossman (1988) concluded that \(p_t \) was not explosive and therefore there was no bubble in the stock market.

In the case where \(d_t \) is I(1) and hence \(\Delta d_t \) is I(0), Equation (6) motivated Diba and Grossman (1988) to look for evidence of the absence of bubbles by testing for a cointegrating relation between \(p_t \) and \(d_t \). In the presence of bubbles, \(p_t \) is always explosive and hence cannot co-move or be cointegrated with \(d_t \) if \(d_t \) is itself not explosive. Therefore, an empirical finding of cointegration between \(p_t \) and \(d_t \) may be taken as evidence against the presence of bubbles.

Evans (1991) questioned the validity of the empirical tests employed by Diba and Grossman (1988) by arguing that none of these tests have much power to detect periodically collapsing bubbles. He demonstrated by simulation that the low power of standard unit root and cointegration tests in this context is due to the fact that a periodically collapsing bubble process can behave much like an I(1) process or even like a stationary linear autoregressive process provided that the probability of collapse of the bubble is not negligible. As a result, Evans (1991, p. 927) claimed that “periodically collapsing bubbles are not detectable by using standard tests.”

Equations (5) and (2) suggest that a direct way to test for bubbles is to examine evidence for explosive behavior in \(p_t \) and \(d_t \) when the discount rate is time invariant. Of course, explosive characteristics in \(p_t \) could in principle arise from \(d_t \) and the two processes would then be explosively cointegrated. However, if \(d_t \) is demonstrated to be nonexplosive, then the explosive behavior in \(p_t \) will provide sufficient evidence for the presence of bubbles because the observed behavior may only arise through the presence of \(b_t \). Of course, it seems likely that in practice explosive behavior in \(p_t \) may only be temporary or short-lived, as in the case of stock market bubbles that collapse after a certain period of time. Some of these possibilities can be taken into account empirically by looking at subsamples of the data.

Looking directly for explosive behavior in \(p_t \) and nonexplosive behavior in \(d_t \) via right-tailed unit root tests is one aspect of the empirical methodology of this article. Although this approach is straightforward, it has received little attention in the literature. One possible explanation is the consensus view that “empirically there is little evidence of explosive behavior” in stock prices, as noted in Campbell et al. (1997, p. 260) for instance. However, as Evans (1991) noted, explosive behavior is only temporary when economic bubbles periodically collapse, and in such cases the observed trajectories may appear more like an I(1) or even stationary series than an explosive series, thereby confounding empirical evidence. He demonstrated by simulation that standard unit root test procedures have difficulties in detecting such periodically collapsing bubbles.

In order for unit root test procedures to be powerful in detecting explosiveness, we propose the use of recursive regression techniques and show below by analytic methods and simulations that this approach is effective in detecting periodically collapsing bubbles. Using these methods, the present article finds that when recursive tests are conducted and data from the 1990s are included in the sample, some strong evidence of explosive characteristics in \(p_t \) emerges.

Our tests are implemented as follows. For each time series \(x_t \) (log stock price or log dividend), we apply the augmented Dickey–Fuller (ADF) test for a unit root against the alternative of an explosive root (the right-tailed). That is, we estimate the following autoregressive specification by least squares:\(^5\):

\[
X_t = \mu_X + \delta x_{t-1} + \sum_{j=1}^{J} \phi_j \Delta x_{t-j} + \epsilon_{X,t}, \quad \epsilon_{X,t} \sim \text{NID} \left(0, \sigma_X^2 \right),
\] (7)

\(^5\) We also implemented the Phillips (1987) and Phillips and Perron (1988) tests and obtained results very similar to the ADF test.
for some given value of the lag parameter \(J \), where NID denotes independent and normal distribution.\(^6\) In our empirical application we use significance tests to determine the lag order \(J \), as suggested in Campbell and Perron (1991). The unit root null hypothesis is \(H_0 : \delta = 1 \) and the right-tailed alternative hypothesis is \(H_1 : \delta > 1 \).

In forward recursive regressions, model (7) is estimated repeatedly, using subsets of the sample data incremented by one observation at each pass. If the first regression involves \(\tau_0 = [nr_0] \) observations, for some fraction \(r_0 \) of the total sample where \([\] \) signifies the integer part of its argument, subsequent regressions employ this originating data set supplemented by successive observations giving a sample of size \(\tau = [nr] \) for \(r_0 \leq r \leq 1 \). Denote the corresponding \(t \)-statistic by \(ADF_r \) and hence \(ADF_1 \) corresponds to the full sample. Under the null we have

\[
ADF_r \Rightarrow \left(\int_0^r \tilde{W} dW \right) / \left(\int_0^r \tilde{W}^2 \right)^{1/2},
\]

and

\[
\sup_{r \in [r_0, 1]} ADF_r \Rightarrow \sup_{r \in [r_0, 1]} \left(\int_0^r \tilde{W} dW \right) / \left(\int_0^r \tilde{W}^2 \right)^{1/2},
\]

where \(\tilde{W} \) is the standard Brownian motion and \(\tilde{W}(r) = W(r) - \frac{1}{r} \int_0^1 W \) is demeaned Brownian motion.\(^7\)

Comparison of \(\sup_r ADF_r \) with the right-tailed critical values from \(\sup_{r \in [r_0, 1]} \int_0^r \tilde{W} dW / \left(\int_0^r \tilde{W}^2 \right)^{1/2} \) makes it possible to test for a unit root against explosiveness. However, this testing procedure cannot date stamp the emergence or collapse of exuberance. To locate the origin and the conclusion of exuberance, one can match the time series of the recursive test statistic \(ADF_r \), with \(r \in [r_0, 1] \), against the right-tailed critical values of the asymptotic distribution of the standard Dickey–Fuller \(t \)-statistic. In particular, if \(r_c \) is the origination date and \(r_f \) is the collapse date of explosive behavior in the data, we construct estimates of these dates as follows:

\[
\hat{r}_c = \inf_{s \geq r_0} \left\{ s : ADF_s > c^{ADF}_{\beta_n}(s) \right\}, \quad \hat{r}_f = \inf_{s \geq r_c} \left\{ s : ADF_s < c^{ADF}_{\beta_n}(s) \right\},
\]

where \(c^{ADF}_{\beta_n}(s) \) is the right-side critical value of \(ADF_s \) corresponding to a significance level of \(\beta_n \). In practice, it is conventional to set the significance level in the 1–5% range. But to achieve consistent estimation of the date stamps \(\{ \hat{r}_c, \hat{r}_f \} \), the significance level \(\beta_n \) needs to approach zero asymptotically, and correspondingly \(c^{ADF}_{\beta_n}(s) \) must diverge to infinity in order to eliminate the type I error as \(n \to \infty \). We therefore let \(\beta_n \) depend on \(n \) in the above formulas. In our practical work reported below it is convenient to use a direct setting and expansion rate for the critical value of \(c^{ADF}_{\beta_n}(s) \) instead of an explicit setting for \(\beta_n \). The setting employed is \(c^{ADF}_{\beta_n}(s) = \log(\log(ns))/100 \). For the sample sizes considered in our empirical application, this setting leads to critical values around the 4% significance level. This date stamping procedure

\(^6\) The asymptotic theory developed below does not require the normality assumption, whereas the bias correction explained later does use the distributional assumption.

\(^7\) Observe that, given the limiting Brownian motion process \(\{ W(r) : r \in [0, 1] \} \), the limiting variate \(\xi(r) = \int_0^r W dW / \left(\int_0^r W^2 \right)^{1/2} \) corresponding to \(ADF_r \) is a stochastic process that evolves with \(r \). However, the finite dimensional distribution of \(\xi(r) \) given \(r \) is the same for all \(r > 0 \) and is the usual unit root limit distribution \(\int_0^1 W dW / \left(\int_0^1 W^2 \right)^{1/2} \).
has some good properties and, in particular, enables the consistent estimation of origination and collapse dates, as discussed below. In general, of course, the lower the actual \(p \)-value of the observed \(ADF_n \), the stronger the empirical evidence for explosive behavior.

If these tests lead to a rejection of \(H_0 \) in favor of \(H_1 \), then we may construct a valid asymptotic confidence interval for \(\delta \) using some new econometric theory for the explosive case, as explained in Section 3.

3. ECONOMETRIC ISSUES

3.1. Econometric Analysis of Explosive Processes. Recent work by Phillips and Magdalinos (2007a,b) has provided an asymptotic distribution theory for mildly explosive processes that can be used for confidence interval construction in the present context. These papers deal with an explosive model of the form

\[
(9) \quad x_t = \delta_n x_{t-1} + \epsilon_{x,t}, \quad t = 1, \ldots, n; \quad \delta_n = 1 + \frac{c}{k_n}, \quad c > 0,
\]

which is initialized at some \(x_0 = o_p(\sqrt{k_n}) \) independent of \(\{\epsilon_{x,t}, t \geq 1\} \), and where \((k_n)_{n \geq 1} \) is a sequence increasing to \(\infty \) such that \(k_n = o(n) \) as \(n \to \infty \). The error process \(\epsilon_{x,t} \) may comprise either independent and identically distributed random variables or a weakly dependent time series with \(E\epsilon_{x,t} = 0 \) and uniform finite second moments so that \(\sup_t E\epsilon_{x,t}^2 < \infty \). Model (9) does not include an intercept in order to avoid the presence of a deterministically explosive component in \(x_t \).

The sequence \(\delta_n = 1 + \frac{c}{k_n} > 1 \) is local to the origin in the sense that \(\delta_n \to 1 \) as \(n \to \infty \), but for any finite \(n \) it involves moderate deviations from a unit root, i.e., deviations that are greater than the conventional \(O(n^{-1}) \) deviations for which unit root tests have nontrivial local power properties (see Phillips, 1987) and unit root type distributions apply. The corresponding time series (which is strictly speaking an array process) \(x_t \) in (9) is mildly explosive. Importantly, \(k_n \) may be within a slowly varying factor of \(n \), for instance \(\log n \), so that we may have \(k_n = n / \log n \).

Models of the form (9) seem well suited to capturing the essential features of economic and financial time series that undergo mildly explosive behavior. They also seem appropriate for capturing periodically collapsing bubble behavior where the bubble may appear over a subperiod of length \(k_n < n \). These mildly explosive models have the very interesting and somewhat unexpected property, established in Phillips and Magdalinos (2007a,b), that they are amenable to central limit theory. Moreover, the limit theory turns out to be invariant to the short memory properties of the innovations \(\epsilon_{x,t} \), so that inferential procedures based on this limit theory are robust to many different departures from simple i.i.d. errors. This means that the models and the limit theory may be used as a basis for statistical inference with processes that manifest mildly explosive trajectories. For economic and financial data, this typically means values of \(\delta_n \) that are in the region \([1.005, 1.05] \). In particular, if \(k_n = n / \log n \) and \(n = 200 \), we have \(\delta_n = 1 + \frac{c}{k_n} \in [1.002, 1.053] \) for \(c \in [0.1, 2] \).

Under some general regularity conditions, Phillips and Magdalinos show that the least squares regression estimator \(\hat{\delta}_n = \sum_{t=1}^{n} x_{t-1} x_t / \sum_{t=1}^{n} x_{t-1}^2 \) has the following limit theory for mildly explosive processes of the form (9):

\[
\frac{k_n (\delta_n)^n}{2c} (\hat{\delta}_n - \delta_n) \Rightarrow C, \quad \text{and} \quad \frac{(\delta_n)^n}{(\delta_n^2 - 1)} (\hat{\delta}_n - \delta_n) \Rightarrow C,
\]

where \(C \) is a standard Cauchy random variable. It follows that a \(100(1 - \alpha) \%) \) confidence interval for \(\delta_n \) is given by the region...
\[
\left(\hat{\delta}_n \pm \frac{(\hat{\delta}_n)^2 - 1}{\hat{\delta}_n} C_\alpha \right),
\]

where \(C_\alpha \) is the two-tailed \(\alpha \) percentile critical value of the standard Cauchy distribution. For 90%, 95%, and 99% confidence intervals, these critical values are as follows:

\[
C_{0.10} = 6.315, \quad C_{0.05} = 12.7, \quad C_{0.01} = 63.65674.
\]

These values can be compared with the corresponding Gaussian critical values of 1.645, 1.96, and 2.576.

The confidence intervals and limit theory are invariant to the initial condition \(x_0 \) being any fixed constant value or random process of smaller asymptotic order than \(k_n^{1/2} \). The confidence intervals and limit theory also remain unchanged if the data-generating process is a unit root model followed by a mildly explosive autoregression such as (9). These properties provide further robustness to the procedure.

3.2. Finite Sample Bias Correction via Indirect Inference Estimation.

Least squares (LS) regression is well known to produce downward biased coefficient estimates in the first-order autoregression (AR). This bias does not go to zero as the AR coefficient \(\delta \to 0 \) and the bias increases as \(\delta \) gets larger. It is therefore helpful to take account of this bias in conducting inference on autoregressive coefficients such as \(\delta \) in (9). Several statistical procedures are available for doing so, including the use of asymptotic expansion formulas (Kendall, 1954), jackknifing (Quenouille, 1956; Efron, 1982), median unbiased estimation (Andrews, 1993), and indirect inference (MacKinnon and Smith, 1998; Gouri´eroux et al., 2000).

Indirect inference was originally suggested and has been found to be highly useful when the moments and the likelihood function of the true model are difficult to deal with, but the true model is amenable to data simulation (Smith, 1993; Gouriéroux et al., 1993). In fact, the procedure also produces improved small sample properties and has the capacity to reduce autoregressive bias, as shown by MacKinnon and Smith (1998) and Gouriéroux et al. (2000) in the time series context and Gouriéroux et al. (2010) in the dynamic panel context. We shall use indirect inference in the present application because of its known good performance characteristics and convenience in autoregressive model estimation.

To illustrate, suppose we need to estimate the parameter \(\delta \) in the simple AR(1) model (i.e., \(J = 0 \) in model (7)):

\[
x_t = \mu_x + \delta x_{t-1} + \epsilon_{x,t}, \quad \epsilon_{x,t} \sim \text{NID}(0, \sigma^2_x),
\]

from observations \(\{x_t; t \leq n\} \), where the true value of \(\delta \) is \(\delta_0 \). Some autoregressive bias reduction methods, such as Kendall’s (1954) procedure, require explicit knowledge of the first term of the asymptotic expansion of the bias in powers of \(n^{-1} \). Such explicit knowledge of the bias is not needed in indirect inference. Instead, indirect inference calibrates the bias function by simulation. The idea is as follows. When applying LS to estimate the AR(1) model with the observed data, we obtain the estimate \(\hat{\delta}_{n}^{LS} \) and can think of this estimate and its properties (including bias) as being dependent on \(\delta \) through the data. Given a parameter choice \(\delta \), let \(\{\tilde{x}_t^{(h)}(\delta); t \leq n\} \) be data simulated from the true model, for \(h = 1, \ldots, H \) with \(H \) being the total number of simulated paths. These simulations rely on the distributional assumption made in (10). Let the LS estimator based on the \(h \)th simulated path, given \(\delta \), be denoted by \(\tilde{\delta}_n^{(h)}(\delta) \).

8 When \(J > 0 \), we need to augment model (10) accordingly.
The indirect inference estimator is defined as the extremum estimator

\[\hat{\delta}_{II}^H = \arg\min_{\delta \in \Phi} \| \hat{\delta}_{LS}^n - \frac{1}{H} \sum_{h=1}^{H} \tilde{\delta}_h^n(\delta) \|, \]

where \(\| \cdot \| \) is some finite dimensional distance metric and \(\Phi \) is the parameter space, which is compact. In the case where \(H \) tends to infinity, the indirect inference estimator becomes

\[\hat{\delta}_{II}^n = \arg\min_{\delta \in \Phi} \| \hat{\delta}_{LS}^n - q_n(\delta) \|, \]

where \(q_n(\delta) = E(\tilde{\delta}_h^n(\delta)) \) is the so-called binding function. In this case, assuming the function \(q_n \) to be invertible, the indirect inference estimator is given by

\[\hat{\delta}_{II}^n = q_n^{-1}(\hat{\delta}_{LS}^n). \]

The procedure essentially builds in a small-sample bias correction to parameter estimation, with the bias being computed directly by simulation.

It can be shown that the asymptotic distribution of \(\hat{\delta}_{II}^n \) is the same as that of \(\hat{\delta}_{LS}^n \) as \(n \to \infty \) and \(H \to \infty \). So the asymptotic confidence interval derived in the previous section applies equally well to the indirect inference estimator and will be implemented in what follows.

3.3. Estimating Origination and Collapse Dates. As explained earlier, date stamping the beginning and conclusion of explosive behavior in the data is based on the criteria (8), leading to the point estimates \(\{\hat{r}_e, \hat{r}_f\} \). It is clearly desirable for these point estimates to be consistent for the true values as the sample size \(n \to \infty \). Asymptotic analysis of \(\{\hat{r}_e, \hat{r}_f\} \) depends on the form of the true model under both the null and the alternative hypothesis. Since the null is that of a unit root model with no period of explosive behavior, it is the alternative hypothesis that is of primary interest.

Note that under the null hypothesis of no explosive behavior, if \(\beta_n \to 0 \) as \(n \to \infty \), then \(c_{\beta_n} \to \infty \). It follows that under that null

\[\lim_{n \to \infty} P (ADF_s > c_{\beta_n}^{adf}(s)) = P \left(\frac{\int_0^s \tilde{W} dW}{\left(\int_0^s \tilde{W}^2 \right)^{1/2}} = \infty \right) = 0. \]

Hence, in the limit as \(n \to \infty \) under the null, there will be no origination point for an explosive period in the data.

In order to consistently estimate the origination and collapse dates of explosiveness under the alternative, we must specify a model that allows for regimes that switch between the unit root and mildly explosive episodes. For the purpose of the discussion that follows, we use a data-generating mechanism that allows for the possibility of a single explosive episode, viz.,

\[x_t = x_{t-1} 1\{t < \tau_e\} + \delta_n x_{t-1} 1\{\tau_e \leq t \leq \tau_f\} \]

\[+ \left(\sum_{k=\tau_f+1}^{t} \varepsilon_k + x_{\tau_f}^* \right) 1\{t > \tau_f\} + \varepsilon_t 1\{t \leq \tau_f\} \]

\[\delta_n = 1 + \frac{c}{n^\alpha}, \quad c > 0, \quad \alpha \in (0, 1), \]
where \(\varepsilon_{x,t} \) is i.i.d. \((0, \sigma^2)\), \(\tau_e \) is the origination date, and \(\tau_f = [nr_f] \) is the collapse date of the explosive episode. If there is no mildly explosive episode, then \(c = 0 \) and \(\delta_n = 1 \). Model (14) starts with a unit root model but allows for switches in regime at \(\tau_e \) (to the explosive episode) and \(\tau_f \) (back to unit root behavior). When the explosive period comes to the end, the initial value of the new unit root period differs from the end value of the explosive period. So the specification captures both exuberance and collapse and involves reinitialization of the process under the collapse. With the reinitialization at \(\tau_f \), the process jumps to a different level \(x_{\tau_f}^* \). The new initial value \(x_{\tau_f}^* \) may be related to the earlier period of martingale behavior in the process, perhaps with some random deviation, in which case we would have \(x_{\tau_e}^* = x_{\tau_e} + x^* \) for some \(O_p(1) \) random quantity \(x^* \). A detailed analysis of this model and the asymptotic behavior of a test procedure for date stamping explosive behavior is given in Phillips and Yu (2009). We summarize those findings in what follows here.

Although the mechanism of collapse is very simple in Model (14), the specification may be further adapted to allow for a short period transitional dynamic, which could be mean reverting to the level \(X_{\tau_f}^* \).

Recursive regressions are run with (14) using the data \(\{x_t : t = 1, 2, \ldots, \tau = [nr]\} \) with \(r \geq r_0 \), so that the minimum amount of data used for the regressions is \(\tau_0 = [nr_0] \). According to (8), we date the origination of the explosive episode as \(\hat{\tau}_e = [n\hat{r}_e] \) where

\[
(15) \quad \hat{\tau}_e = \inf_{s \geq \tau_0} \{ s : ADF_s > c v_{\beta_n}^{ADF}(s) \},
\]

and \(c v_{\beta_n}^{ADF}(s) \) is the right-side 100\(\beta_n\)% critical value of the limit distribution \(f_0^x W dW/(f_0^x \tilde{W}^2)^{1/2} \) of the \(ADF_s \) statistic based on \(\tau_e = [ns] \) observations and \(\beta_n \) is the size of the one-sided test. For \(r < r_e \) it is easy to show that \(P(\hat{\tau}_e < r) \to 0 \), as \(n \to \infty \), just as under the null. Denote \(x_{j-1} - \tau^{-1} \sum_{i=1}^{\tau} x_{i-1} \) by \(\tilde{x}_{j-1} \). When \(\tau = [nr] \) and \(r > r_e \), we find by examining the dominant components in the numerator and denominator of the recursive coefficient estimator \(\hat{\delta}_n(\tau) = \sum_{j=1}^{\tau} \tilde{x}_j^2 / \sum_{j=1}^{\tau} \tilde{x}_j^2 \) that

\[
(16) \quad \frac{n^{(1+\alpha)/2} \delta_n^{\tau - \tau_e}}{2c} (\hat{\delta}_n(\tau) - \delta_n) = \frac{\hat{\delta}_n^{\tau - \tau_e}}{n^{\alpha/2 + 1/2}} \sum_{j=\tau_e}^{\tau} x_{j-1} \varepsilon_j \{1 + o_p(1)\} \to C, \quad 2c \hat{\delta}_n^{\tau - \tau_e} \sum_{j=\tau_e}^{\tau} \tilde{x}_{j-1}^2 \{1 + o_p(1)\} \to C,
\]

where the limit \(C \) is a Cauchy variate (cf., theorem 4.3 of Phillips and Magdalinos, 2007a). Then, since \(\alpha \in (0, 1) \) and \(c > 0 \) we have

\[
(17) \quad \tau (\hat{\delta}_n(\tau) - 1) = \tau (\hat{\delta}_n(\tau) - \delta_n) + \tau (\delta_n - 1) = \tau (\delta_n - 1) + o_p \left(\frac{\tau}{n^{(1+\alpha)/2} \delta_n^{\tau - \tau_e}} \right) = n^{1-\alpha} rc + o_p(1) \to \infty,
\]

\(^9\) For convenience of presentation, it is assumed in this section that the lag length \(J = 0 \).
and the DF t-statistic is

$$
\left(\frac{\sum_{j=1}^{\tau} \tilde{\chi}_{j-1}^2}{\hat{\sigma}_r^2} \right)^{1/2} (\hat{\delta}_r - 1) = \left(\frac{\tau^{-2} \sum_{j=1}^{\tau} \tilde{\chi}_{j-1}^2}{\hat{\sigma}_r^2} \right)^{1/2} \tau (\hat{\delta}_r - 1)
$$

(18)

$$
= \left(\frac{n^2 \delta_n^2 (\tau - \tau_e)}{\tau^2 \sigma_n^2 (\tau - \tau_e) r_e \tau_{\tilde{v}}^2 \tau_{\tilde{c}}^2} \right)^{1/2} n^{1 - \alpha} r_e \{1 + o_p(1)\}
$$

$$
= n^{1 - \alpha/2} c^{3/2} r^{3/2} \frac{1}{2^{1/2} r_e^{1/2}} \{1 + o_p(1)\},
$$

where $\hat{\sigma}_r^2$ is the usual least squares residual variance estimator.

We deduce from (18) that for all $\tau = [nr]$ and $r > r_e$

$$
P \left(ADF_r > c_{v_{\hat{\rho}_n}}^{adf} (r) \right) \rightarrow 1,
$$

(19)

provided $c_{v_{\hat{\rho}_n}}^{adf} \rightarrow 0$. According to (15) we have

$$
\hat{r}_e = \inf_{s \geq r_0} \{ s : ADF_s > c_{v_{\hat{\rho}_n}}^{adf} (s) \}.
$$

It follows that for any $\eta > 0$

$$
P \{ \hat{r}_e > r_e + \eta \} \rightarrow 0,
$$

since $P (ADF_{r_e + a_\eta} > c_{v_{\hat{\rho}_n}}^{adf} (r_e + a_\eta)) \rightarrow 1$ for all $0 < a_\eta < \eta$. Since $\eta > 0$ is arbitrary and since $P \{ \hat{r}_e < r_e \} \rightarrow 0$ as shown earlier, we deduce that $P \{ |\hat{r}_e - r_e| > \eta \} \rightarrow 0$ as $n \rightarrow \infty$, provided

$$
\frac{1}{c_{v_{\hat{\rho}_n}}^{adf} (r)} + \frac{c_{v_{\hat{\rho}_n}}^{adf} (r)}{n^{1 - \alpha/2}} \rightarrow 0.
$$

(20)

for all $r \in [r_0, 1]$. Hence, as $n \rightarrow \infty$

$$
\hat{r}_e = \inf_{s \geq r_0} \{ s : ADF_s > c_{v_{\hat{\rho}_n}}^{adf} (s) ; s \in [r_0, 1] \} \rightarrow_p r_e.
$$

Condition (20) seems a mild condition on the critical value. In particular, $c_{v_{\hat{\rho}_n}}^{adf} (s)$ is required to go to infinity (to ensure the type I error is negligible asymptotically) and at a slower rate than $n^{1 - \alpha/2}$ as $n \rightarrow \infty$. Accordingly, any slowly varying expansion rate for $c_{v_{\hat{\rho}_n}}^{adf} (s)$, such as $c (\log (\log (n)))^2$, will suffice, for all $\alpha \in (0, 1)$.

Conditional on finding some originating date \hat{r}_e for explosive behavior, we date the collapse of the explosive episode by

$$
\hat{r}_f = \inf_{s \geq \hat{r}_e} \{ s : ADF_s < c_{v_{\hat{\rho}_n}}^{adf} (s) \}.
$$

(21)

Using a analysis similar to that for \hat{r}_e, Phillips and Yu (2009) show that $\hat{r}_f \rightarrow_p r_f$, provided $c_{v_{\hat{\rho}_n}}^{adf} (r) \rightarrow \infty$ for all $r \in [r_0, 1]$. Hence, under some mild regularity and rate conditions, the recursive ADF procedure consistently estimates the origination and collapse dates of explosive

10 It can also be useful to impose a minimum duration requirement such as $s \geq \hat{r}_e + \frac{\log(n)}{n}$ in condition (21), so that only bubbles of reasonable duration (i.e., greater than a very small infinity as $n \rightarrow \infty$) are detected in the test.
behavior. This result is not surprising. The reason is that when \(x_t \) collapses to a level within an \(O_p(1) \) neighborhood of \(x_\tau \), the signal in the data from the explosive period is strong enough to determine the asymptotics, as shown in Phillips and Magdalinos (2007a) in a similar context. In fact, in this case \(\hat{\delta}_n(\tau) \rightarrow_p 1 \) when \(\tau > \tau_f \) but there is a downward bias in the limiting distribution.

The formulation (14) is related to the Markov switching model of Hall et al. (1999). An important difference between the two approaches is that we do not specify the mechanism for regime switching whereas in Hall et al., nature selects the regime (or state, as represented by \(s_t = 0 \) or \(1 \)) at date \(t \) with a probability that depends on what regime the process was in at date \(t - 1 \). Our approach allows us to estimate the origination and conclusion dates whereas the Markov switching model can estimate the filtered or smoothed probability of the state variable \(s_t \). It is reasonable to believe that the \(p \)-value of the one-sided \(ADF_r \) test is negatively related to the \(E(s_t | I_t) = \Pr(s_t = 1 | I_t) \), the filtered probability of being in the explosive state in the Markov regime switching model.

4. DATA

Our data are taken from Datastream International. We collect monthly observations on the Nasdaq composite price index (without dividends) and the Nasdaq composite dividend yields, and compute the Nasdaq composite dividend series from these two series. We use the Consumer Price Index (CPI), which is obtained from the Federal Reserve Bank of St. Louis, to convert nominal series to real series. Our sample covers the period from February 1973 to June 2005 and comprises 389 monthly observations.

Figure 1 plots the time series trajectories of the Nasdaq real price and real dividend indices. Both series are normalized to 100 at the beginning of the sample. As can be seen, both price and dividend grew steadily from the beginning of the sample until the early 1990s. The price series then began to surge, and the steep upward movement in the series continued until the late 1990s as investment in DotCom stocks grew in popularity. Early in the year 2000 the price abruptly dropped and continued to fall to the mid-1990s level. The dividend series, on the other hand, remained steady throughout the sample period.

5. TESTING AND DATING EXUBERANCE

Table 1 reports the \(ADF_1 \) and \(\sup_{r_0 \in [0,1]} ADF_r \) test statistics for both the log Nasdaq real price and log Nasdaq real dividend indices for the full sample from February 1973 to June 2005, where \(r_0 = 0.10 \) (i.e., the initial start-up sample has 39 observations). Also reported are the various
critical values for each of the two tests. For the ADF_1 test, the asymptotic critical values are obtained from Monte Carlo simulation and are consistent with those reported by Fuller (1996, table 10.A.2). For $sup_{r \in [r_0, 1]} ADF_r$, the critical values are obtained using Monte Carlo simulation based on 10,000 replications.

Several conclusions are drawn from the table. First, if we were to follow the convention and apply the ADF test to the full sample (February 1973 to June 2005), the tests could not reject the null hypothesis $H_0: \delta = 1$ in favor of the right-tailed alternative hypothesis $H_1: \delta > 1$ at the 5% significance level for the price series, and therefore one would conclude that there were no significant evidence of exuberance in the price data. If one believes in a constant discount rate, the result is consistent with Diba and Grossman (1988) and is subject to the criticism leveled by Evans (1991) because standard unit root tests for the full sample naturally have difficulty in detecting periodically collapsing bubbles. Second, the $sup_{r \in [r_0, 1]} ADF_r$ test, on the other hand, provides significant evidence of explosiveness in the price data at the 1% level, suggesting the presence of price exuberance, but no evidence in the dividend data. However, $sup_{r \in [r_0, 1]} ADF_r$ cannot reveal the location of the exuberance.

To locate the origin and the conclusion of exuberance, Figure 3 plots the recursive ADF_r statistics for the log real price and the log real dividend. Also plotted is the curve $\log(\log(ns))/100$, with $s \in [0.1, 1]$ and $n = 389$, that is used for the critical values $c_{t \beta_n}(s)$. Since ns ranges between 39 and 389, $\log(\log(ns))/100$ ranges between 0.013 and 0.018. These values of $c_{t \beta_n}(s)$ turn out to be close to the 4% significance level critical point. Obviously, these critical values go to infinity as a slower rate than $n^{1-\alpha}$ and $\beta_n^* n$ as $n \to \infty$. The optimal lag length is determined using the procedure suggested by Campbell and Perron (1991). Starting with 12 lags in the model, coefficients are sequentially tested for significance at the 5% level, leading to the selection of

11 We have also conducted the tests using price and dividend series in levels instead of in natural logarithms. The results are similar and the conclusions remain qualitatively unchanged. They are not reported to conserve space and are available upon request. The same remark applies to Figures 4 and 5 discussed below as well.

12 The procedure of Campbell and Perron involves two steps. Following a suggestion of a referee, we estimated the lag length and the autoregressive parameters in one step via the Lasso-type method (Knight and Fu, 2000; Caner and Knight, 2008) and found the point estimates of δ in (7) are nearly identical by the two methods. To the best of our knowledge, the asymptotic theory is not yet known for the Lasso estimator of δ in a mixed set of unit root and explosive variables, thereby inhibiting inference with this procedure.
the model for which the coefficient of the last included lag is significant at the 5% level. The initial start-up sample for the recursive regression covers the period from February 1973 to April 1976 (10% of the full sample).

The forward recursive regressions give some interesting new findings (see Figure 3). The dividend series is always nonexplosive. The stock price series is also tested to be nonexplosive for the initial sample, which suggests no evidence of exuberance in the initial data. This feature is maintained until June 1995. In July 1995, the test detects the presence of exuberance in the data, and the evidence in support of price exuberance becomes stronger from this point on and peaks in February 2000. The exuberance is detected as continuing until February 2001, and by March 2001, there is little evidence of exuberance in the data. In April 2001, the evidence of exuberance shows up again in the data and persists until July 2001. In August 2001, no further evidence of exuberance is present in the data.

Interestingly, the first occurrence date for price exuberance in the data is July 1995, which is more than one year before Greenspan’s historic remark of “irrational exuberance” made in December 1996.

Following a suggestion of the referees, we checked the robustness of the empirical results by running rolling regressions, in which each regression is based on a subsample of size \(N \) of smaller order than \(n \) and with the initialization rolling forward. For this particular data, we choose \(N = 77 \), which is 20% of the full sample, and hence the first sample period is from February 1973 to June 1979. Figure 4 plots the rolling recursive \(ADF \) statistic for the log real price and the log real dividend. Also plotted is the 5% asymptotic critical value. As does the test based on forward recursive regression, the test based the rolling regressions detects explosiveness in price in the 1990s. In particular, the test indicates that exuberance in the 1990s starts in July 1995 and ends in September 2000. The estimated origination date is the same as in Figure 3. So the empirical identification of exuberance in the 1990s and the

13 Ng and Perron (1995) demonstrate that too parsimonious a model can have large size distortions, whereas an overparameterized model may result in reduction of test power. They show that methods based on sequential tests have an advantage over information-based rules because the former have less size distortions and have comparable power.

14 Two alternative moving window sizes, \(N = 60 \) and 120 (5 and 10 years, respectively) were tried and very similar results were obtained.

15 Although the sample size is fixed at 77 in all the rolling regressions, the asymptotic critical values are very close to the critical values when the sample size is 77.
testing for explosive behavior in the NASDAQ index in the 1990s

<table>
<thead>
<tr>
<th></th>
<th>ADF_1</th>
<th>$\sup_{r_0 \in [0,1]} ADF_r$</th>
<th>$\hat{\delta}^{LS}$</th>
<th>$\hat{\delta}^I$</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Sample Period: January 1990 to December 1999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log price p_t</td>
<td>2.309</td>
<td>2.894</td>
<td>1.025</td>
<td>1.033</td>
<td>[1.016, 1.050]</td>
</tr>
<tr>
<td>Log dividend d_t</td>
<td>−8.140</td>
<td>−1.626</td>
<td>0.258</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panel B: Sample Period: January 1990 to June 2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log price p_t</td>
<td>2.975</td>
<td>2.975</td>
<td>1.036</td>
<td>1.040</td>
<td>[1.033, 1.047]</td>
</tr>
<tr>
<td>Log dividend d_t</td>
<td>−8.600</td>
<td>−1.626</td>
<td>0.204</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Critical Values for the Explosive Alternative

<table>
<thead>
<tr>
<th>Level</th>
<th>1%</th>
<th>4%</th>
<th>5%</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>0.60</td>
<td>0.01</td>
<td>−0.08</td>
<td>−0.44</td>
</tr>
<tr>
<td></td>
<td>2.094</td>
<td>1.552</td>
<td>1.468</td>
<td>1.184</td>
</tr>
</tbody>
</table>

NOTE: This table reports ADF_1 and $\sup_{r_0 \in [0,1]} ADF_r$ tests of the null hypothesis of a unit root against the alternative of an explosive root, where $r_0 = 0.10$. The optimal lag length for the ADF test is selected according to top-down sequential significance testing, as suggested by Campbell and Perron (1991), with the maximum lag set to 12 and the significant level set to 5%. The series are the log real Nasdaq price index and log real Nasdaq dividend. Panel A reports the results for the period January 1990 to December 1999; Panel B reports the results for the period January 1990 to June 2000 when explosive behavior is detected to be the strongest. The critical values for the ADF statistic and $\sup_{r_0 \in [0,1]} ADF_r$ are obtained by Monte Carlo simulation with 10,000 replications.

empirically determined date of origination of exuberance appear robust to the choice of the regression schemes. However, the estimated collapse date is a few months earlier in the data. Interestingly, the new test also detects some explosive behavior before the 1987 crash, although this exuberance is very short-lived.16

To highlight the explosive behavior in the Nasdaq during the 1990s, we carry out the analysis using two subsamples. The first subsample is from January 1990 to December 1999, the 10-year period that recent researchers have focused on (e.g., P´astor and Veronesi, 2006; Ofek and Richardson, 2003; Brunnermeier and Nagel, 2004). Panel A of Table 2 reports the test results. As above, we apply the ADF_1 and $\sup_r ADF_r$ tests for a unit root against the alternative of an explosive root in both the log real price and log real dividend series.17 We also obtain the least squares estimate $\hat{\delta}^{LS}$, the indirect inference estimate $\hat{\delta}^I$, the 95% asymptotic confidence interval of δ based on $\hat{\delta}^I$, and critical values for the unit root tests.

All the results give strong evidence of explosiveness in p_t. For example, for the log real Nasdaq price index, the ADF_1 statistic for the full sample is 2.309, far exceeding the 1% critical value of 0.60. Similar results occur with the $\sup_r ADF_r$ test. We therefore reject the null hypothesis of a unit root at the 1% significance level in favor of explosive behavior for the Nasdaq stock index. In contrast, there is no evidence that the log real dividend series exhibits explosive behavior.18

Figure 5 graphs the trajectory of the ADF_r statistics together with $\log(\log(nS))/100$, with $s \in [0.1, 1]$ and $n = 186$, as the critical values for sample observations from January 1990 to the end of the sample. As for the full sample, we choose $r_0 = 0.10$. Similar to Figures 4 and 5, we again date the start of price exuberance in July 1995, so the empirically determined date of origination of the exuberance appears robust to the choice of the initial sample. The recursive

16 Also, the nonmonotonicity in ADF_r for the 1990 episode in Figure 4 is more apparent than in Figure 3. For example, we find weak evidence of a unit root in January 1997 and in August-October 1998, where the ADF_r statistic is slightly smaller than the corresponding critical values at these dates.
17 The lag length J chosen by sequential testing for ADF_1 is $J = 0$ for both the log price and log dividend series.
18 Based on these critical values, the ADF_1 test will indeed reject the null hypothesis of a unit root in favor of the alternative of stationarity for the dividend series.
regressions detect the conclusion of exuberance in October 2000, somewhat earlier than that reported in Figure 3 but very similar to that reported in Figure 4.

The autoregression gives the AR coefficient estimate \(\hat{\delta}_{LS} = 1.025 \) in stock price. Assuming that the error term in the regression follows an i.i.d. normal distribution and \(J = 0 \), we obtain the indirect inference estimate \(\hat{\delta}_{II} = 1.033 \) via simulation with 10,000 replications. The associated 95\% asymptotic confidence interval for \(\delta \) is \([1.016, 1.050]\). This implies that the log stock price \(p_t \) will grow at the explosive rate of 3.3\% per month. Since the dividend series \(d_t \) is not explosive, with a constant discount rate the fundamental price \(p_f^t \) is also not explosive, being determined exclusively by dividends according to (3). Therefore, from (2), \(b_t \) (the log bubble) must also be explosive with a growth rate at least as high as the growth rate of stock price, \(g = 3.3\% \) per month. With 95\% confidence, the true growth rate \(g \) lies in the range between 1.6\% and 5\% per month. Under the assumption of constant discount rate, this provides sufficient conditions for the presence of bubble.

To understand the implication of the estimated explosive rate for stock price, suppose that the Nasdaq index were overvalued by around 10\% when Greenspan made his “irrational exuberance” comment in December 1996. Then the initial size of the log bubble would be \(b_0 = \log(P_0/P_{f0}^t) = \log(1.10) = 0.0953 \) in December 1996. Using the indirect inference estimate of the growth rate \(g = 0.033 \), we may calculate that, by March 2000 when the Nasdaq index reached its historic high (39 months later), the expected log level of the price bubble would have risen to \(b_t = (1 + 0.033)^{39} \times 0.0953 = 0.338 \), and the ratio of the expected Nasdaq price to its fundamental value would have been \(P_t/P_{f}^t = \exp(b_t) = \exp(0.338) = 1.40 \). In other words, after 39 months, the expected Nasdaq index would have become around 40\% overvalued relative to its fundamental.

Notice that \(\hat{\delta}_{II} = 1.033 \) reported in Panel A of Table 2 gives an unbiased estimate of the explosive root for the stock price process \(p_t \), which can be considered a lower bound of the explosive root of the unobservable bubble process \(b_t \). The reason is as follows. From (2), we know that the actual stock price consists of the fundamental component and the bubble component. Under the assumption that the fundamental component is either I(1) or I(0) and

![Figure 5](imageurl)
the bubble component is explosive, if a bubble lasts for a sufficiently long period of time, the bubble component will dominate the fundamental component and the actual stock price will grow at around the same speed as the bubble component does. However, within a limited time period when a bubble is first developing, the magnitude of the bubble component may be small relative to the fundamental component even though the process is explosive, and therefore employing the stock price series for estimation will underestimate the true growth rate of the bubble.

To provide a more realistic estimate of the growth rate of the bubble, since the Nasdaq index kept rising after December 1999, we implement the ADF test by extending the first subsample to June 2000 when the test detects explosive price behavior with the most significant ADF test statistic. Panel B of Table 2 reports the least squares estimate for this sample, \(\hat{\beta}_{LS} = 1.036 \), which yields the indirect inference estimate \(\hat{\delta}_{II} = 1.040 \).19 This implies a growth rate \(g = 4\% \) per month. Although this is still a lower bound estimate of the growth rate of the bubble process, it is plausible to think of it as the closest to the true growth rate.

Suppose that the Nasdaq index were overvalued by 10% when our test first detected the bubble to start in June 1995; then the initial size of the bubble is \(b_0 = \log(P_0/P_0^f) = \log(1.10) = 0.0953 \). Using the above unbiased estimate of the speed of bubble, by June 2000 (60 months later) when our test detected the bubble to be the strongest, the expected size of the bubble would have become \(b_t = (1 + 0.04)^{60} \times 0.0953 = 1.0025 \). This implies that the ratio of the expected Nasdaq price to its fundamental value would have been \(P_t/P_t^f = \exp(b_t) = \exp(1.0025) = 2.73 \). In other words, the expected Nasdaq index would have been 173% overpriced relative to its fundamental value after 60 months.20 The actual Nasdaq index peaked at 5,048.62 points on March 10, 2000, then dropped to 1,950.4 by December 31, 2001 and to 1,335.31 by December 31, 2002. If the year 2001 end value is considered close to the “fundamental” value, then the Nasdaq index would be 159% overpriced at the peak (5049/1950 = 2.59). On the other hand, if the year 2002 end value is considered the “fundamental” value, the peak value would be 278% overpriced (5049/1335 = 3.78). Therefore, the above estimate of the growth rate of the bubble matches the actual Nasdaq price dynamics reasonably well.

6. Finite Sample Properties

6.1. Unit Root Tests for an Explosive Bubble. Although standard unit root tests have been applied to test for unit roots against explosiveness in the price series \(p_t \) in Diba and Grossman (1988) and Evans (1991), both papers only examined the finite sample performance of the standard unit root tests for the bubble \(b_t \) (see Section VI in Diba and Grossman and Section III in Evans). Naturally, however, it is more informative to verify the finite sample performance of the standard unit root tests in the price series itself \(p_t \) because in practice the price series is observed but the bubble series is not.

Consider the following data-generating process, where the fundamental price follows a random walk with drift and the bubble process is a linear explosive process without collapsing:

\[
\begin{align*}
p_t &= p_t^f + b_t, & p_t^f &= \mu_f + p_{t-1}^f + \varepsilon_{f,t}, \\

b_t &= (1 + g)b_{t-1} + \varepsilon_{b,t},
\end{align*}
\]

where \(\varepsilon_{f,t} \sim NID(0, \sigma^2_f) \), and \(\varepsilon_{b,t} \sim NID(0, \sigma^2_b) \). We use Nasdaq price index data from February 1973 to December 1989 (i.e., before the 1990s explosive price period started) to estimate the

19 The lag length \(J \) chosen by sequential testing for \(ADF_1 \) is \(J = 5 \) for the log price series and \(J = 0 \) for the log dividend series.

20 The OLS estimate, 1.036, implies only 121% overpriced index level. Hence, the compounding effect arisen from the estimation bias is economically significant.
Table 3
POWER OF THE ADF$_1$ TEST

Panel A

<table>
<thead>
<tr>
<th>Initial Value b_0</th>
<th>$g = 0.00$ (size)</th>
<th>$g = 0.01$</th>
<th>$g = 0.02$</th>
<th>$g = 0.03$</th>
<th>$g = 0.04$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.049</td>
<td>0.107</td>
<td>0.458</td>
<td>0.806</td>
<td>0.934</td>
</tr>
<tr>
<td>0.02</td>
<td>0.049</td>
<td>0.111</td>
<td>0.464</td>
<td>0.810</td>
<td>0.937</td>
</tr>
<tr>
<td>0.04</td>
<td>0.049</td>
<td>0.115</td>
<td>0.476</td>
<td>0.818</td>
<td>0.935</td>
</tr>
<tr>
<td>0.06</td>
<td>0.049</td>
<td>0.119</td>
<td>0.495</td>
<td>0.828</td>
<td>0.951</td>
</tr>
<tr>
<td>0.08</td>
<td>0.049</td>
<td>0.125</td>
<td>0.522</td>
<td>0.848</td>
<td>0.954</td>
</tr>
<tr>
<td>0.10</td>
<td>0.049</td>
<td>0.134</td>
<td>0.550</td>
<td>0.866</td>
<td>0.961</td>
</tr>
</tbody>
</table>

Panel B

<table>
<thead>
<tr>
<th>Initial Value b_0</th>
<th>$\sigma_b = 0.005$</th>
<th>$\sigma_b = 0.01$</th>
<th>$\sigma_b = 0.02$</th>
<th>$\sigma_b = 0.03$</th>
<th>$\sigma_b = 0.04$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.652</td>
<td>0.817</td>
<td>0.901</td>
<td>0.930</td>
<td>0.942</td>
</tr>
<tr>
<td>0.02</td>
<td>0.822</td>
<td>0.851</td>
<td>0.905</td>
<td>0.933</td>
<td>0.944</td>
</tr>
<tr>
<td>0.04</td>
<td>0.972</td>
<td>0.911</td>
<td>0.924</td>
<td>0.934</td>
<td>0.948</td>
</tr>
<tr>
<td>0.06</td>
<td>0.999</td>
<td>0.962</td>
<td>0.936</td>
<td>0.945</td>
<td>0.950</td>
</tr>
<tr>
<td>0.08</td>
<td>1.000</td>
<td>0.988</td>
<td>0.953</td>
<td>0.952</td>
<td>0.955</td>
</tr>
<tr>
<td>0.10</td>
<td>1.000</td>
<td>0.998</td>
<td>0.968</td>
<td>0.961</td>
<td>0.961</td>
</tr>
</tbody>
</table>

Note: This table reports the empirical power of the ADF test for an explosive stock market bubble at the 5% nominal size level with 120 observations and 10,000 Monte Carlo replications. The model used for the experiment is $p_t = p_{f,t} + b_t$, $p_{f,t} = \mu + p_{f,t-1} + \epsilon_{f,t}$ and, $b_t = (1 + g)b_{t-1} + \epsilon_{b,t}$, with parameter values $\mu = 0.00227$, $\sigma_f = 0.05403$, and $\sigma_b = 0.0324$ estimated based on the Nasdaq price index data as described in the text. These parameter values are used to conduct simulations under different assumptions about the speed parameter g and the initial level of the bubble process b_0. Results are reported in Panel A. Panel B displays results with different values assigned to b_0 and the bubble innovation standard deviation σ_b when the speed parameter g is set to its empirically fitted value of 0.04.

It is known from Diba and Grossman (1988) that standard unit tests can detect explosive characteristics in b_t. Our simulation results suggest that the standard unit root tests can also detect the explosive characteristics in p_t when bubbles appear in the empirically realistic settings as long as the bubbles are not periodically collapsing. Panel A of Table 3 clearly demonstrates that the higher the test power is, the larger is the growth rate g and/or the larger is the initial level of the bubble b_0. When the growth rate g is larger than 0.01, the test has substantial power against the explosive alternative, and when $g = 0.04$ (the indirect inference estimate using the Nasdaq stock index during the bubbly period), the test has nearly perfect power against the explosiveness alternative regardless of the initial level of the bubble b_0. Panel B of Table 3 shows that smaller values of the standard deviation σ_b lead to greater test power provided the initial value b_0 is not too small (here $b_0 > 0.03$). Overall, the power is not very sensitive to the innovation standard deviation σ_b or to the initial value of the bubble b_0 and is quite high with the growth rate $g = 0.04$.

The fundamental process, assuming that there was no bubble during this period so that $p_t = p_{f,t}^*$. This estimation yields the values $\mu_f = 0.00227$ and $\sigma_f = 0.05403$. We then use these two parameter values along with $g = 0.04$ (based on the indirect inference estimate of δ in Panel B of Table 2) to obtain the estimate of the bubble innovation $\sigma_b = 0.0324$ by employing data for the explosive period January 1990 to June 2000 via the Kalman filter, as in Wu (1997). These parameters μ_f, σ_f, and σ_b are used to conduct simulations under different assumptions about the speed parameter g and the initial level of the bubble b_0 with 120 observations and 10,000 replications. The simulation results are reported in Panel A of Table 3. Panel B displays the results for different values for the bubble innovation standard deviation σ_b, whereas the speed parameter g is set to 0.04, which is the indirect inference estimate of $\delta - 1$ reported in Panel B of Table 2.
6.2. Recursive Unit Root Tests and Periodically Collapsing Bubbles. The above simulation design does not allow for the possibility of periodically collapsing bubbles, an important class of bubbles that seem more relevant in practical economic and financial applications. Evans (1991) proposed a model to simulate such collapsing bubbles and showed that standard unit root tests had little power to detect this type of bubbles. In this section, we first design a simulation experiment to assess the capacity of our recursive regression tests to detect this type of periodically collapsing bubbles. We show that although the tests are inconsistent in the context, in finite samples the tests have good power.

Evans (1991) suggested the following model for a bubble process B_t that collapses periodically:

\begin{align}
B_{t+1} &= (1 + g)B_t \varepsilon_{b,t+1}, \quad \text{if } B_t \leq \alpha, \\
B_{t+1} &= \left[\zeta + \pi^{-1}(1 + g)\theta_{t+1}(B_t - (1 + g)^{-1}\zeta)\right] \varepsilon_{b,t+1}, \quad \text{if } B_t > \alpha,
\end{align}

where $g > 0$, $\varepsilon_{b,t} = \exp(y_t - \tau^2/2)$ with $y_t \sim \text{NID}(0, \tau^2)$, θ_t is an exogenous Bernoulli process that takes the value 1 with probability π and 0 with probability $1 - \pi$. Evans (1991) specifies his model in levels and so price, dividend, and bubble are in levels and are expressed in upper-case letters. This model has the property that B_{t+1} satisfies $E_t(B_{t+1}) = (1 + g)B_t$, analogous to (4). The model generates bubbles that survive as long as the initial bounding condition $B_t \leq \alpha$ applies (say $t \leq T_a$) and thereafter only as long as the succession of identical realizations $\theta_{T_a+k} = 1, k = 1, 2, \ldots$, hold. The bubble bursts when $\theta_t = 0$.

To facilitate comparisons between our simulation results with those of Evans (1991), we use the same simulation design and parameter settings as his. In particular, a bubble process B_t of 100 observations is simulated from the model (24) and (25) with the parameter settings $g = 0.05, \alpha = 1, \zeta = 0.5, B_0 = 0.5,$ and $\tau = 0.05,$ and θ_t is a Bernoulli process that takes the value 1 with probability π and 0 with probability $1 - \pi$. When $\theta_t = 0$, the bubble bursts. We choose the value $\pi = 0.999, 0.99, 0.95, 0.85, 0.75, 0.5, 0.25$. In addition, a dividend series (in levels) of 100 observations is simulated from the following random walk model with drift:

$$D_t = \mu_D + D_{t-1} + \varepsilon_{d,t}, \varepsilon_{d,t} \sim \text{NID}(0, \sigma_d^2),$$

where $\mu_D = 0.0373, \sigma_d^2 = 0.1574, D_0 = 1.3$. Consequently, the fundamental price is generated from

$$P_t^f = \mu_D(1 + g)g^{-2} + D_t/g,$$

and the simulated price series follows as $P_t = P_t^f + B_t$. In the simulations reported, B_t is scaled upwards by a factor of 20, as suggested in Evans (1991).

Table 4 reports the empirical power of the ADF_1 and sup$_r ADF_r$ statistics for testing an explosive bubble based on the 5% critical value reported in Table 1 and 10,000 replications. We should emphasize that, unlike Evans (1991), who assumed that B_t is observed and tested the explosiveness in B_t, we apply the ADF_1 test to the price series itself P_t. Several interesting results emerge from the table. First, the power of the ADF_1 test depends critically on π. When $\pi = 0.999$ or 0.99, the ADF_1 test has considerably good power (0.914 and 0.460 respectively). When $\pi \leq 0.95$, the ADF_1 test has essentially no power. These results are consistent with those reported in Evans (1991, table 1). Second, the power of the sup$_r ADF_r$ statistic also depends on π, but in a much less drastic way. For example, when $\pi = 0.25$, it still has considerable

Blanchard (1979), Flood and Garber (1980), and Blanchard and Watson (1982) first proposed stochastic bubbles that can burst with a fixed probability. Burmeister et al. (1983) show the equivalence of a class of different-looking stochastic bubble processes.
We choose different values for \(\pi \) and \(0 \) with probability 1 (1991) model is Appendix, we formally show that the maximum time span of a collapsing bubble in Evans’ becomes much higher (0.714).

| Power of the ADF\(_1\) and sup\(_r\{0,1\}\)ADF\(_r\) tests under the Evans (1991) model |
|-----------------|------|------|------|------|------|------|------|------|
| \(\pi \) | 0.999 | 0.99 | 0.95 | 0.85 | 0.75 | 0.50 | 0.25 | 0.15 |
| ADF\(_1\) | 0.914 | 0.460 | 0.069 | 0.022 | 0.016 | 0.026 | 0.044 | |
| sup\(_r\{0,1\}\)ADF\(_r\) | 0.992 | 0.927 | 0.714 | 0.432 | 0.351 | 0.342 | 0.340 | |

Note: This table reports the empirical power of the ADF test for an explosive bubble at the 5% nominal size level with 100 observations and 10,000 Monte-Carlo replications. The model used for the experiment is \(P_t = P_{t-1}^0 + 2B_t \) where \(P_{t-1}^0 = \mu(1 + g) - 2D_t\), \(D_t = \mu + D_{t-1} + \varepsilon_{d,t} \), \(\varepsilon_{d,t} \sim \text{NID}(0, \sigma_d^2) \) and \(B_t \) collapses periodically according to

\[
B_{t+1} = (1 + g)B_t \varepsilon_{b,t+1}, \quad \text{if } B_t \leq \alpha, \\
B_{t+1} = [\xi + \pi^{-1}(1 + g)\theta_{t+1}(B_t - (1 + g)^{-1}\xi)] \varepsilon_{b,t+1}, \quad \text{if } B_t > \alpha,
\]

with \(g > 0, \varepsilon_{d,t} = \exp(y_t - \tau^2/2), y_t \sim \text{NID}(0, \tau^2), \xi_t \) being a Bernoulli process that takes the value 1 with probability \(\pi \) and 0 with probability \(1 - \pi \). We set \(g = 0.05, \alpha = 1, \xi = 0.5, B_0 = 0.5, \tau = 0.05, \mu = 0.0373, \sigma_d^2 = 0.1574, D_0 = 1.3 \).

We choose different values for \(\pi \).

power (0.340). For empirically more relevant cases, say when \(\pi = 0.95 \), the power of sup\(_r\)ADF\(_r\) becomes much higher (0.714).

Clearly the performance of the tests is determined by the time span of a bubble. In the Appendix, we formally show that the maximum time span of a collapsing bubble in Evans’ (1991) model is \(O_p(\log n) \), which is very short relative to the full sample size \(n \), so that standard unit root tests cannot be expected to perform very well. This Appendix further shows that in a regression of \(B_{t+1} \) on \(B_t \) with \(O_p(\log n) \) observations from an explosive period, the signal in the regression has the maximum order of \(O_p(n^{2\log(1+\frac{\log n}{\pi}) - \frac{\tau^2}{4}}) \). When \(\log(1+\frac{\log n}{\pi}) < 1 + \frac{\tau^2}{4} \), this signal is smaller than that of an integrated process whose signal is \(O_p(n^2) \) and significantly less than that of an explosive process. These findings explain the failure of conventional unit root tests to detect bubbles of this type, confirming the simulations in Evans (1991) and in our Table 4.

In recursive regressions, the signal will be comparatively stronger because the data set is shorter and it will be emphasized when the end point in the recursion occurs toward the end of a bubble. This argument suggests that there will be some statistical advantage to the use of recursive regression techniques and the use of a sup test in assessing the evidence for periodically collapsing bubbles, as confirmed in Table 4. However, in a recursive regression using samples of size \(\tau = \lceil nr \rceil \) for \(r > 0 \), the maximum length of the bubble is still \(O_p(\log n) \) and this is still not long enough relative to \(n \), for a recursive test to be consistent essentially because the signal is not strong enough. This limitation shows up in the simulations as the test performs worse when \(\pi \) gets smaller, although the power for the sup test is clearly nontrivial and substantially better than that of conventional tests. We might expect some additional gain from the use of a rolling regression in conducting the test, where the sample size \((N) \) used for the regression has smaller order than \(n \), for instance, \(N = \lceil n^\gamma \rceil \) for some \(\gamma < 1 \), or even \(N = O(\log n) \). When \(N = \lceil n^\gamma \rceil \), for instance, the signal from the explosive part of the data, which still has the time span of \(O_p(\log n) \), will dominate provided that \(n < 2 \log(1+\frac{\log n}{\pi}) - \frac{\tau^2}{2} \). However, in the case of rolling regressions of this type, tests generally have different limit distributions from those studied already in the unit root and structural break literature, for example by Banerjee et al. (1993), where rolling regressions of length proportional to the sample size \(n \) are used.

7. CONCLUSION

This article has proposed a new approach to testing for explosive behavior in stock prices that makes use of recursive regression, right-sided unit root tests, and a new method of confidence interval construction for the growth parameter in stock market exuberance. Simulations reveal
that the approach works well in finite samples and has discriminatory power to detect explosive processes and periodically collapsing bubbles when the discount rate is time invariant.

The empirical application of these methods to the Nasdaq experience in the 1990s confirms the existence of exuberance and date stamps its origination and collapse. As the second epigraph indicates, the existence of exuberance or “bubble” activity may be self-evident to some economists in view of the sheer size of the wealth created and subsequently destroyed in the Nasdaq market. Of primary interest therefore are its particular characteristics such as the origination date, which we find to be mid-1995, the peak in February 2000, and the conclusion sometime between September 2000 and March 2001. Comparison of this statistical origination to the timing of the famous remark by Greenspan in December 1996 affirms that Greenspan’s perceptions were actually supported by empirical evidence of exuberance in the data at that time.

Greenspan’s remarks are often taken to indicate foresight concerning the subsequent path of Nasdaq stocks. The present findings indicate that his remarks were also supported in some measure by the track record of empirical experience up to that time. Thus, Greenspan’s perspective concerning irrational exuberance in stock prices and future profitability in December 1996 showed hindsight as well as foresight concerning the impending escalation in technology asset values.

This article has not attempted to identify explicit sources of the 1990s exuberance in internet stocks. Several possibilities exist, including the presence of a rational bubble, herd behavior, or explosive effects on economic fundamentals arising from time variation in discount rates. Identification of the explicit economic source or sources will involve more explicit formulation of the alternative models and suitable model determination techniques to empirically distinguish between such models. The present econometric methodology shows how the data may be studied as a mildly explosive propagating mechanism. The results confirm strong empirical support for such activity in the Nasdaq data over the 1990s. The methodology can also be applied to study recent phenomena in real estate, commodity, foreign exchange, and equity markets, which have attracted attention. The results will be reported in future work.

APPENDIX: PROPERTIES OF EVANS’S (1991) MODEL

We may write the initial stopping time \(T_\alpha \) for which the boundary value \(\alpha \) is attained as

\[
T_\alpha = \inf \{ t : B_t \geq \alpha \}.
\]

Subsequent stopping times are determined in the same way after the initial bubble collapses. The duration of each of the bubbles depends on these stopping times plus the number of repeated subsequent draws of \(\theta_{T_{\alpha}+1} = 1 \). It is known (e.g., Schilling, 1990) that the maximum run time, \(R_n \), for a sequence of identical Bernoulli draws in a sample of size \(n \) has mean \(E(R_n) = O(\log \{ 1/\alpha \} \{ n(1-\pi) \}) = O\left(\frac{\log(1-\pi)}{\log \frac{1}{\alpha}} \right) \) and variance \(\text{Var}(R_n) = \frac{\pi^2}{6 \log^2 \left(\frac{1}{\alpha} \right)} \). It follows that \(R_n = O_p(\log n) \). Hence, the maximum time span of a collapsing bubble over the full sample will be \(T_\alpha + R_n = T_\alpha + O_p(\log n) \). To determine the length of the stopping time \(T_\alpha \), observe that the condition in (24) requires

\[
B_{T_\alpha} = (1 + g)^{T_\alpha} B_0 \prod_{s=1}^{T_\alpha} u_s = (1 + g)^{T_\alpha} B_0 \prod_{s=1}^{T_\alpha} e^{y_s - \frac{1}{2} \tau^2} \leq \alpha,
\]

which holds if

\[
T_\alpha \log (1 + g) + \log B_0 + \sum_{s=1}^{T_\alpha} \left(y_s - \frac{1}{2} \tau^2 \right) \leq \log \alpha,
\]
or

\[T_\alpha \left\{ \log (1 + g) - \frac{\tau^2}{2} \right\} + \sum_{s=1}^{T_\alpha} y_s \leq \log \alpha - \log B_0. \]

Writing \(\sum_{s=1}^{T_\alpha} y_s = \tau W(T_\alpha) \) where \(W \) is a standard Brownian motion, this condition can be rewritten as

(A.1) \[W(T_\alpha) + \mu T_\alpha \leq A, \]

where

\[\mu = \frac{1}{\tau} \log (1 + g) - \frac{\tau}{2}, \quad A = \frac{1}{\tau} \{ \log \alpha - \log B_0 \}. \]

The time span \(T_\alpha \) of the first component in the bubble (24) is therefore the passage time until a standard Brownian motion \(W(t) \) with drift \(\mu \) hits the boundary value \(A \). That is

(A.2) \[T_\alpha = \inf_s \{ W(s) + \mu s \geq A \}. \]

It is well known (e.g., Borodin and Salminen, 1996, p. 223) that this passage time satisfies

\[P(T_\alpha = \infty) = 1 - e^{\mu A - |\mu A|}, \]

and, since for small values of \(\tau \) and with \(B_0 < 1 \) we have \(\mu, A > 0 \), it follows that \(P(T_\alpha = \infty) = 0 \). Also, \(T_\alpha \) has moment generating function (Borodin and Salminen, 1996, p. 223)

\[E(e^{-gT_\alpha}) = e^{\mu A - |A|/2 g + \mu^2/2}, \]

so that the expected hitting time

\[E(T_\alpha) = |A\mu| e^{\mu A - |A\mu|} = A\mu = A \left\{ \frac{1}{\tau} \log (1 + g) - \frac{\tau}{2} \right\} \]

is finite, as is the variance. It follows that the maximum time span of a collapsing bubble generated by (24) and (25) over the full sample is \(T_\alpha + R_n = O_p(\log n) \) and, in general, the time span will be shorter than \(T_\alpha + R_n \) because the maximum run time \(R_n \) will not usually be attained.

This finding explains the failure of conventional unit root tests to detect bubbles of this type, confirming the simulations in Evans (1991). In effect, even the maximum time span of \(O_p(\log n) \) for these collapsing bubbles is so short relative to the full sample size \(n \) that full sample tests for explosive behavior are inconsistent. Heuristically, this is because the signal from the explosive part of the trajectory is generally not strong enough to dominate the regression before the
bubble collapses. In particular, if data \(\{B_t\}_{t=1}^n \) were available, the signal from an explosive period initialized at \(T_0 \) and of duration \(T_\alpha + R_n \) in the regression of \(B_{t+1} \) on \(B_t \) has order

\[
(A.3) \quad O_p \left(\sum_{t=T_0}^{T_\alpha + R_n + T_0} B_t^2 \right)
\]

\[
= O_p \left(T_\alpha \alpha^2 + \sum_{t=T_0+T_\alpha+1}^{R_n+T_0} B_t^2 \right) = O_p \left(\sum_{t=T_0+T_\alpha+1}^{R_n+T_0} \left\{ \frac{1+g}{\pi} \right\}^{2t} \alpha^2 T_{n+T_\alpha+R_n+1} \prod_{s=T_0+T_\alpha+1} u_s \right)
\]

\[
= O_p \left(\sum_{t=T_0+T_\alpha+1}^{R_n+T_0+T_\alpha} \left\{ \frac{1+g}{\pi} \right\}^{2t} \alpha^2 \exp \left[\sum_{s=T_0+T_\alpha+1}^{T_{n+T_\alpha+R_n}} y_s - R_n \frac{\tau^2}{2} \right] \right)
\]

\[
= O_p \left(\sum_{t=T_0+T_\alpha+1}^{R_n+T_0+T_\alpha} \left\{ \frac{1+g}{\pi} \right\}^{2t} \alpha^2 \exp \left[T_{n+T_\alpha+R_n} - R_n \frac{\tau^2}{2} \right] \right)
\]

\[
= O_p \left(\sum_{t=T_0+T_\alpha+1}^{R_n+T_0+T_\alpha} \left\{ \frac{1+g}{\pi} \right\}^{2t} \alpha^2 \exp \left[T_{n+T_\alpha+R_n} - R_n \frac{\tau^2}{2} \right] \right)
\]

\[
= O_p \left(\sum_{t=T_0+T_\alpha+1}^{R_n+T_0+T_\alpha} \left\{ \frac{1+g}{\pi} \right\}^{2t} \alpha^2 \exp \left[- \frac{\tau^2}{2} \log n \right] \right)
\]

\[
= O_p \left(\sum_{t=T_0+T_\alpha+1}^{R_n+T_0+T_\alpha} \left(\frac{1+g}{\pi} \right)^{2t} \times O_p \left(e^{-\frac{\tau^2}{2} \log n} \right) = O_p \left(\left(\frac{1+g}{\pi} \right)^{2R_n} \right) \times O_p \left(e^{-\frac{\tau^2}{2} \log n} \right)
\]

\[
= O_p \left(n^2 \log \left(\frac{1+g}{\pi} - \frac{\tau^2}{2} \right) \right),
\]

since \(R_n = O_p(\log n) \). The signal from a stationary autoregression is \(O_p(n) \) and from a unit root autoregression is \(O_p(n^2) \) so that the signal from the explosive component above will be of maximal order \(O_p(n^2 \log(\frac{1+g}{\pi}) - \frac{\tau^2}{2}) \), which is still a power law in \(n \) and no greater than that of an integrated process, whose signal is \(O_p(n^2) \), when

\[
\log \left(\frac{1+g}{\pi} \right) < \frac{1}{2} + \frac{\tau^2}{4},
\]

and no greater than that of a polynomial in an integrated process in general, thereby excluding explosive behavior.

REFERENCES

EXPLOSIVE BEHAVIOR IN THE 1990s NASDAQ

