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Abstract

This paper employs a neural network (NN) to study the nonlinear predictability of exchange

rates for four currencies at the 1-, 6- and 12-month forecast horizons. We find that our neural

network model with market fundamentals cannot beat the random walk (RW) in out-of-sample

forecast accuracy, although it occasionally shows a limited market-timing ability. The neural

network model without monetary fundamentals forecasts somewhat better for the British pound and

the Canadian dollar. The model also exhibits some market-timing ability for the Deutsche mark at

the 6- and 12-month horizons, and for the Canadian dollar at the 1-month horizon. In general, the

model performs more poorly when it becomes more complex or when the forecast horizon

lengthens. Our overall results are more on the negative side and suggest that neither nonlinearity

nor market fundamentals appear to be very important in improving exchange rate forecast for the

chosen horizons.
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1. Introduction

In this paper, we employ a neural network (NN) to study the predictability of

exchange rates over the short to medium forecast horizons and to investigate the
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usefulness of monetary fundamentals in explaining the movements of currency prices.

Exchange rate forecasting is of practical as well as theoretical importance. The

practical value lies in that good forecasts can provide useful information for investors

in asset allocation, business firms in risk hedging, and governments in policy making.

On the theoretical front, whether currency prices are predictable has important

implications for the efficient market hypothesis and for theoretical modeling in

international finance.

The literature shows, however, that exchange rates are largely unforecastable. In a

seminal work, Meese and Rogoff (1983) estimate three linear structural models for the

dollar prices of the British pound, the German mark and the Japanese yen. They find that

none of these models can outperform the naive random walk (RW) model without drift in

terms of out-of-sample forecast accuracy at the 1-, 6- and 12-month horizons. Furthermore,

they report that neither their two time-series models nor the forward exchange rate appear to

improve forecasts.

Subsequently, a number of researchers have pursued nonlinear modeling of exchange

rates, with little success. For example, Engel and Hamilton (1990) and Engel (1994) show

that the Markov switching model in general does not generate superior forecasts to the

random walk or to the forward exchange rate. Using locally weighted regression, a

nearest-neighbor nonparametric technique, Diebold and Nason (1990) report that their

model is unable to provide a lower root mean square error (RMSE) out of sample than

predicting form the RW with weekly data for 10 exchange rates. Their results constitute

strong evidence against the existence of nonlinearities that are exploitable to improve

forecasts. Using the same nonparametric approach, Meese and Rose (1991) estimate five

structural models with monthly data for four currencies. They find that all five models

display a general lack of ability to out-predict the RW. Mizrach (1992) demonstrates that a

multivariate nearest-neighbor nonparametric model marginally improves upon the RW

only for one of three exchange rates that he explores, but the improvement is not

statistically significant. The results of Meese and Rose (1991) and Mizrach (1992)

complement those of Diebold and Nason (1990) and further suggest that nonlinear

modeling cannot improve exchange rate forecasts.

With accumulating evidence that exchange rates are essentially unforecastable over

short horizons (1 year or less), recent studies have focused more on the predictability

over longer horizons. Mark (1995) finds that at the 3- and 4-year horizons, a flexible-

price monetary model, produces lower RMSE than the RW for three out of four

currencies that he investigates, and for the Deutsche mark at the 4-year horizon, his

model can beat the RW at the 5% significance level. Using data for five currencies, Chinn

and Meese (1995) report that at the 3-year horizon, one of the three structural models

they estimate produces a significantly lower RMSE than the RW for the Japanese yen,

although results for the other four currencies remain largely negative.1 Other studies on

exchange rate unpredictability include Diebold et al. (1994), who report that incorporat-

ing the cointegration relationship among exchange rates as documented by Baillie and
1 The robustness of long-horizon predictability results has been called into question by Kilian (1999),

Berkowitz and Giorgiannni (2001), and Faust et al. (2001).
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Bollerslev (1989, 1994) does not appear to improve upon the RW in out-of-sample

forecast.2

We share the view with many researchers that standard linear models may be

misspecified and hence unable to fully capture exchange rate dynamics. To this end, we

deviate from the traditional approach by employing an NN technology to study the

forecastability of exchange rates. One main advantage of using the NN method is that

NNs are universal approximators which can approximate a large class of functions with a

high degree of accuracy, while most of the commonly used nonlinear models cannot. The

flexible NN mapping is data based and does not need a priori parametric restrictions that are

typically needed in traditional econometric modeling. Moreover, in terms of parameter-

ization, NNs are found to be in general more parsimonious than linear subspace methods

such as polynomial, spline and trigonometric series in approximating unknown functions

(Kuan and Liu, 1995). Therefore, if a nonlinear relation between exchange rates and

fundamentals indeed exists, a suitably constructed NN may be able to capture it effectively.

We explore the predictability of currency prices for the Japanese yen, the Deutsche mark,

the British pound and the Canadian dollar at the 1-, 6- and 12-month horizons using

monthly data from 1973.3 to 1997.7. We find that our NN model with monetary

fundamentals does not beat the RW in out-of-sample forecast accuracy, although it

occasionally shows a limited market-timing ability. The NN model without fundamentals

forecasts somewhat better for the British pound and the Canadian dollar, and it exhibits

some market-timing ability for the Deutsche mark at the 6- and 12-month horizons, and for

the Canadian dollar at the 1-month horizon. In general, the forecasting performance

deteriorates when the model becomes more complex or when the forecast horizon length-

ens. Our overall results are more on the negative side and suggest that neither nonlinearity

nor market fundamentals is very important in improving forecast for the chosen horizons.

The NN technologies have been increasingly employed to study financial and economic

data.3 In the study of exchange rates, Kuan and Liu (1995) report that the NNs predict

daily exchange rates better than the RW in two out of five currencies they evaluate. Brooks

(1997) and Gencay (1999) also document some predictability of daily exchange rates

using an NN. Although the NN and nearest-neighbor regression are both nonparametric

models, nearest-neighbor regression is a local procedure to approximate an unknown

function while the NN is a global approximation approach. In contrast to the negative

findings of Diebold and Nason (1990), these studies suggest that for high frequency data
2 Three recent papers document the usefulness of fundamentals. Rapach and Wohar (in press) examine the

relationship between exchange rates and monetary fundamentals for 14 countries over very long time spans and

find substantial evidence for the importance of fundamentals. Anderson et al. (2001) find a linkage between

macroeconomic news and intraday exchange rate movements. Kilian and Taylor (2001) embody smooth threshold

dynamics to capture nonlinear mean reversion of exchange rates and report that exchange rates are forecastable

over the long horizons (2–3 years) but not at the short horizons. On a new frontier, the market microstructure

approach has been shown to cast light on the key puzzles in exchange rate economics, namely, the determination,

excess volatility, and forward bias puzzles (Lyons, 2001, p. 171). The literature on exchange rate forecasting is

fairly long, but we have not attempted to provide an overview here. See, for example, Frankel and Rose (1995) for

a survey.
3 For a brief survey, see Qi (1996). More recent contributions include Swanson and White (1997), Garcia and

Gencay (2000), Qi (1999), and Qi and Maddala (1999), among others.
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the global NN approach may be superior to the local nonparametric approach. These

studies, however, include no market fundamentals as explanatory variables in the

forecasting equation and are therefore essentially nonlinear univariate time series analysis.

An interesting and important question remains whether the global NN approach can also

beat the RW at lower frequencies when fundamentals are used. Since it is important for

researchers of international finance to know whether market fundamentals help predict

exchange rates in a nonlinear fashion, we employ lower frequency (monthly) data to

explore a possible nonlinear relation between exchange rates and fundamentals, in an

attempt to address the issues of whether the unpredictability is caused by limitations of

linear specifications and whether economic fundamentals are useful in explaining currency

price movements. This paper thus differs from Kuan and Liu (1995), Brooks (1997), and

Gencay (1999) in that our choices of explanatory variables are guided by economic theory.

Our study from the global NN approach with market fundamentals complements the

existing studies and, in particular, offer a direct comparison to Meese and Rose (1991),

who employ a local nonparametric method using monthly data with fundamentals.

The remainder of this paper is organized as follows. Section 2 provides some

theoretical background on exchange rate determination and motivates our empirical

specifications. In Section 3, we introduce the NN methodology and describe various

statistics to be employed to test for the forecastability of exchange rates. Section 4

describes the data, while Section 5 reports the empirical results. Concluding remarks are

offered in Section 6.
2. Theoretical motivation

We employ a simple version of the monetary model of exchange rate determination,

popularized by Bilson (1978) and Mussa (1978), to motivate our empirical work and to

guide our choice of forecasting variables. Within this model framework, it is assumed that

both the domestic and foreign countries have a transactions-type money demand function

and that both countries have the same income elasticity and interest rate semi-elasticity.

Combining the money-market equilibrium conditions for the two countries yields:

mt � pt ¼ a0 þ a1yt � a2rt; ð1Þ
where mt, pt, and yt are, respectively, natural logarithms of the relative money supply,

relative price level and relative real income between the domestic and foreign countries; rt
is their interest rate differential; a1 is the common income elasticity; a2 is the common

interest rate semi-elasticity; and a0 is a constant parameter. Assuming that the purchasing

power parity holds,4 we obtain:

st ¼ mt � a0 � a1yt þ a2rt; ð2Þ
where st is the logarithm of exchange rate (domestic currency price of one unit foreign

currency).
4 For recent empirical studies supporting purchasing power parity under the current float, see Frankel and

Rose (1996) and Wu (1996), among others.



M. Qi, Y. Wu / Journal of Empirical Finance 10 (2003) 623–640 627
Eq. (2) expresses a contemporaneous relation between the exchange rate and three

fundamental variables: relative money supply, relative income and interest rate differential.

Admittedly, it is derived from a fairly restricted version of the monetary model. It is,

however, straightforward to adopt a more general specification by relaxing some of the

assumptions. For example, if the income elasticity and interest rate semi-elasticity of the

domestic country are allowed to be different from those of the foreign country, then the

domestic and foreign incomes and interest rates variables will enter separately. If prices are

assumed to be sticky and purchasing power parity does not hold at all times, then relative

inflation rates can be added to the right hand side of Eq. (2). While these additional

variables and more general specifications may offer insights about the forecast performance

of the model, the direct expense is that they can rapidly increase the number of parameters

and dramatically reduce the degrees of freedom,5 apart from the increased computational

burden. To remain focused and to keep the system manageable so as to obtain more precise

estimates of model parameters, we adopt this relatively parsimonious specification.

It is well documented that Eq. (2) does not hold on a period-by-period basis and that

deviations from this simple relation can be quite persistent due to, for example, nominal

rigidities. However, over time there may exist a tendency for the exchange rate to gradually

revert to its fundamental value in response to either nominal or real shocks, and hence

market fundamentals may contain useful information in forecasting changes in future

exchange rates. We follow Mark (1995) by postulating that the h-period ahead change in

exchange rate is related to its current deviation from the fundamental value, namely:

stþh � st ¼ bh þ chðmt � a0 � a1yt þ a2rt � stÞ þ etþh; ð3Þ

where bh and ch are regression parameters at horizon h and et + h is the h-period forecast

error. We study three forecasting horizons (h = 1, 6 and 12) in this paper. The above

specification assumes that the exchange rate can move away from its equilibrium value in

the short run, but it will converge to its fundamental value over time and the market can be

expected to be efficient in the long run. How fast the market will converge towards

equilibrium is an empirical issue and economic theory does not give a simple answer.

Eq. (3) thus provides some guidance for our forecasting exercise. It shows that the h-

period ahead exchange rate should be related to the current level of the exchange rate, as

well as three monetary variables. Notice that we do not intend to obtain the most

reasonable econometric estimates of the model parameters in Eq. (3) as our purpose in

this paper is not to investigate the validity of the simple monetary model per se. But rather,

our focus is on examining whether market fundamentals contain any useful information in

forecasting future currency prices. To this end, in the forecasting experiment below, we

choose (st, mt, yt, rt)V as our parsimonious information set. We then estimate a set of

flexible nonlinear NN specifications using these as explanatory variables to explain st + h.

We will also estimate a simple linear regression model (LR) using these same fundamen-
5 For example, if the domestic and foreign incomes and interest rates variables enter separately and inflation

rates are included, four explanatory variables will be added to the forecasting equation, which increases the

number of parameters by 4n, where n is the number of hidden-layer units that varies from 1 to 10 in our NN

model. In order to avoid under-fitting, as the number of explanatory variables rises, n needs to increase

accordingly. This can further expand the total number of parameters.
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tals, and compare the forecast accuracy of our NN with this benchmark model, as well as

with the naive RW model and a neural network model without monetary fundamentals.

The estimation strategies as well as the comparison metrics are explained in the following

section.
3. Empirical methodology

We briefly explain the NN technology in Section 3.1. Section 3.2 describes the

forecasting experiment, and the metrics and statistics used in the comparison of out-of-

sample forecasts.

3.1. Neural networks

NNs are a class of flexible nonlinear models inspired by the way the human brain

processes information. Given an appropriate number of hidden-layer units, NNs can

approximate a nonlinear (or linear) function to an arbitrary degree of accuracy through

the composition of a network of relatively simple functions (see Hornik et al., 1989; White,

1990, among others). There are various kinds of NNs, among which the three-layer

feedforward network is most widely used and is adopted in the present study. Let f be the

unknown underlying function (linear or nonlinear) through which a vector of input variables

X=(x1, x2,. . .,xk)Vexplains the output variable s, i.e., s= f(X), where for simplicity superfluous

time subscripts are omitted. Then f can be approximated by a three-layer NN model:

f ðX Þ ¼ a0 þ
Xn
j¼1

ajg
Xk
i¼1

bijxi þ b0j

 !
þ e; ð4Þ

where n is the number of units in the hidden layer, k is the number of input variables; g is the

logistic function: g(x) =1/(1+ exp(�x)), a commonly used transfer function in feedforward

neural networks; {aj, j = 0,1,. . .,n} represents a vector of coefficients (weights) from the

hidden-layer units to the output-layer units; {bij, i= 0,1,. . .,k, j = 0,1,. . .,n} denotes a matrix

of coefficients from the input-layer units to the hidden-layer units; and e is the error term. The

error term can be made arbitrarily small if n is sufficiently large. However, too large an n can

cause the model to overfit in which case the in-sample errors are small but the out-of-sample

errors may be large. The choice of n is data dependent and there exists no general rule for

predetermining it. Thus, we perform a sensitivity analysis by exploring different values of n

(from 1 to 10).

The parameters are estimated by minimizing the sum of squared errors Se2 in Eq. (4).

We use the Levenberg–Marquardt algorithm for estimation because it is by far the fastest

algorithm for moderate-sized (up to several hundred free parameters) feedforward NNs.

The initial values of the parameters are generated with Nguyen and Widrow’s (1990)

method, and Bayesian regularization (MacKay, 1992) is used to prevent overfitting.

Finally, to ensure that the global minimum is obtained, each network is estimated 10 times

based on 10 sets of initial values, and the one with the smallest sum of square errors is

retained and used to generate out-of-sample forecasts.



3.2. Out-of-sample forecast, metrics and statistics

In a sample with T observations, the out-of-sample forecasts for a given horizon h are

carried out by first estimating Eq. (4) with data up through date t0 < T, so that the last

observation used is (st0, Xt0
� h). Let ðâht0 ; b̂

h
t0
Þ denote the coefficients estimated with these

observations. The first h-period forecast is

ŝt0þh ¼ âh0;t0 þ
Xn
j¼1

âhj;t0g
Xk
i¼1

b̂h
ij;t0

xi;t0 þ b̂h
0j;t0

 !
: ð5Þ

This procedure is repeated for t0 + 1, t0 + 2,. . .,T� h, thus yielding N forecast points,

where N = T� t0� h + 1. Forecast accuracy is measured by the root mean square error

(RMSE). We also employ the direction accuracy (DA), or the percentage of correct

predictions in direction changes, as a measure of the market-timing ability of a model. We

use Pesaran and Timmermann’s (1992) (PT) non-parametric method to test for the

statistical significance of market-timing ability of a model.

To test whether the forecasts from two competing models are equally accurate, we use

the Diebold and Mariano (1995) (DM) for the significance of the difference between the

squared forecast errors of the two models. Under the null hypothesis of equal forecast

accuracy, the mean difference of square errors is zero, and the asymptotic distribution of

the DM test statistic is standard normal. We use Newey and West’s (1987) method to

obtain a consistent estimate of the spectral density at frequency zero. Andrews’ (1991)

approximating rule is used to set the truncation lag.

An alternative method to compare forecast accuracy is to employ Wilcoxon’s signed-

ranks test (SR), which is distribution free. The SR test gives an observation with a larger

absolute square error difference a higher weight than that with a smaller difference. Upon

scaling, this statistic is asymptotically standard normal.
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4. The data

All data are monthly and are obtained from IMF’s International Financial Statistics.

Our sample starts in March 1973, the same as in Meese and Rogoff (1983), and ends in

July 1997 with 293 observations. We have chosen exchange rates between the U.S. dollar

and the Japanese yen, the Deutsche mark, the British pound and the Canadian dollar. The

first three foreign currencies along with the U.S. dollar form the core currencies in the

world economy. The Canadian dollar is chosen because of Canada’s close economic tie to

the United States.

Exchange rates are end-of-month U.S. dollar prices of the foreign currencies. Variables

chosen to proxy market fundamentals are as follows. Wemeasure money supply byM1, and

real income by industrial production in each of the countries. As for interest rates, we use

Treasury-bill rates for Britain, Canada and the U.S. (line 60c). Treasury-bill rate data are not

available for Japan and are available for Germany only from July 1975. Therefore, for these

two countries, we use call money rates (line 60b) as an alternative measure of interest rate.
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5. Empirical results

To make our study comparable to Meese and Rogoff (1983) and others, the forecast

horizons, h, are chosen to be 1, 6 and 12 months. All experiments are carried out using the

‘‘rolling regression’’ technique, where we use data from the beginning of the sample up to

the forecasting month to estimate model parameters. At each horizon, our out-of-sample

forecast covers the period from January 1990 through July 1997 with 91 months.6 For

each currency, we use ex ante observations on the set of explanatory variables, Xt=(st� h,

mt� h, yt� h, rt� h)V, to estimate 10 NN specifications of st.
7 We choose 1–10 hidden units

so as to check for robustness of the results and to avoid a possible model selection bias.

For comparison, we use three benchmark models: the simple RW without drift, a neural

network model without monetary fundamentals (NN1), and the linear model with the same

set of explanatory variables X (LR). The empirical results are organized as follows.

Table 1 reports results on the forecast performance for the Japanese yen. Similarly,

Tables 2, 3 and 4 present results for the German mark, the British pound, and the Canadian

dollar, respectively. To conserve space and for convenience, for the three tests, Pesaran–

Timmermann (PT), Diebold–Mariano (DM) and signed-ranks (SR), we only report their

p-values, defined as the significance levels at which the null hypothesis under inves-

tigation can be rejected. In calculating the DM statistic, we use two fixed lags (0 and 24)

and Andrews’ optimal truncation lag to estimate the spectral density at frequency zero, but

only report the results obtained with Andrews’ lag to economize on space.8 In each table,

Panels A, B, and C report, respectively, the results for 1-, 6-, and 12-month forecast

horizons. Within each panel, Columns (1)–(4) report results for the random walk model

(RW), and the NN model with monetary fundamentals (NN) at 10 levels of complexity.

Columns (5)–(8) present results for the linear monetary model (LR) and the NN model

without fundamentals (NN1). For each model, we report the root mean square error

(RMSE) in percentage terms. For all models except the RW, a measure of market-timing

ability (DA) is also shown along with the PT test for the significance of this measure. As

for the RW, since it has no market-timing ability by definition and the PT test is not well

defined, no DA is reported. Columns (9) and (10) compare the performance of the NN to

the RW, where we use the DM and SR tests for the null hypothesis that the square forecast

error using the RW is smaller than that using the NN. Organized in the same manner,

Columns (11) and (12) exhibit the test results for the null hypothesis that the LR yields a

smaller square forecast error than the NN; Columns (13) and (14) compare the NN1 with

the NN; and Columns (15) and (16) compare the RW with the NN1.
6 Economic theory provides little guidance as how to choose an ‘‘optimal’’ forecasting period in a given

sample. Our ‘‘rule of thumb’’ here is that we use roughly the first 2/3 of the sample to estimate the first rolling

regression and the remaining 1/3 for out-of-sample forecasting. Too few observations used in the estimation

period can render parameter estimates imprecise, especially for the NN model where a large number of parameters

have to be estimated. On the other hand, a reasonable sample size is needed in the forecasting period in order to

make the various test statistics for comparison reliable.
7 According to Eq. (5), each model has a total of 1+(k+ 2)n parameters to estimate, where k is the number of

right-hand-side variables and n is the number of hidden units.
8 The DM test results at fixed truncation lags 0 and 24 are similar to those using Andrews’ lags. They are

available from the authors upon request.
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We start with the Japanese yen, and discuss the full set of results at different forecast

horizons in turn. We will then briefly comment on the results for the other three currencies

because results across all four currencies are somewhat similar.

5.1. The Japanese yen

It is apparent that our NN model with fundamentals cannot beat the simple RW model

in terms of out-of-sample forecast accuracy at any horizon. At all 10 levels of complexity,

the NN produces higher RMSEs than the RW and it does so statistically significantly in

most cases, as can be seen in Columns (9) and (10).9 Furthermore, the more complex the

model, the less accurate the forecast of the NN compared to the RW. Second, Columns

(11) and (12) show that the NN also does not seem to improve forecasts over the LR.

Third, the LR on the other hand produces a lower RMSE than the RW at the 1-, 6- and 12-

month horizons, and the longer the horizon, the better the forecast by the LR compared to

the RW, a pattern consistent with that documented by Mark (1995). However, this pattern

does not exist for either the NN or NN1. Indeed, as the forecast horizon lengthens, the

performance of both neural network models deteriorates. Four, the NN shows a limited

market-timing ability at the 6- and 12-month horizons. In particular, at the 12-month

horizon, when the number of hidden units is between 4 and 9, the DA measure is well

above 50% and is sometimes as high as 74%. Statistically, this measure is better than pure

chance at the 5 or 1% significance level. This result is in contrast with Engel (1994) who

finds that at the 12-month horizon the Markov switching model produces an average DA

of 52% for 13 exchange rates and this DA measure is not statistically significant. Finally,

from Columns (13) and (14), compared to the NN1 with the same number of hidden layer

units, the NN in general yields a higher RMSE and in many occasions performs

significantly worse than the NN1.10 In summary, the neural network model with

fundamentals cannot beat the random walk, the linear structural model or the neural

network model without fundaments in general (Table 1).

5.2. The Deutsche mark

These results are quite similar to those for the Japanese yen, in that neural network

models with fundamentals in general produce higher forecast errors than the RW, LR, and

NN1 at all horizons and at almost all complexity levels (the only exception being that the

NN performs better than the LR and NN1 at 6- and 12-month horizons when n = 1). In

particular, the NN performs more poorly at longer horizons and appears to be more

overfitted for larger n’s. At the 6- and 12-month horizons, the NN1 has some market-

timing ability, with the DA measures ranging between 53% and 55%, which are statisti-

cally significant at the 5% level (Table 2).
9 In Columns (9) and (10), a p-value no greater than 0.05 indicates that the NN yields a lower forecast error

than the RWat the 5% significance level, while a p-value no smaller than 0.95 means that the NN produces a higher

forecast error at the 5% level. The same interpretation is given for the p-values reported in Columns (11)– (16).
10 Notice that the NN and NN1 may be of different levels of complexity even with the same n because the

NN uses four explanatory variables while the NN1 uses only 1 (the 1-lag value of exchange rate). Nevertheless, in

the absence of more appropriate methods, we view this as a natural comparison.



Table 1

Out-of-sample performance for the Japanese yen

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

Model RMSE DA PT Model RMSE DA PT RW–NN LR–NN NN1–NN RW–NN1

(%) (%) (%) (%)
DM SR DM SR DM SR DM SR

Panel A: 1-month horizon

RW 3.22 – – LR 3.21 56.04 0.10

NN NN1

n= 1 3.47 50.55 0.42 n= 1 3.40 47.25 0.70 0.93 0.94 0.90 0.91 0.81 0.89 0.94 0.97

n= 2 3.65 50.55 0.39 n= 2 3.39 46.15 0.77 0.99 0.99 0.98 0.99 0.93 0.96 0.95 0.98

n= 3 3.67 50.55 0.42 n= 3 3.39 45.05 0.83 1.00 0.99 1.00 1.00 0.91 0.80 0.96 0.98

n= 4 3.72 46.15 0.79 n= 4 3.38 45.05 0.83 1.00 1.00 1.00 1.00 0.97 0.96 0.96 0.99

n= 5 4.03 47.25 0.70 n= 5 3.42 45.05 0.83 1.00 1.00 1.00 1.00 0.99 0.99 0.97 0.99

n= 6 3.86 53.85 0.20 n= 6 3.36 45.05 0.83 1.00 0.99 1.00 1.00 0.99 0.96 0.96 0.99

n= 7 4.26 42.86 0.93 n= 7 3.42 45.05 0.83 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.99

n= 8 4.36 45.05 0.83 n= 8 3.38 48.35 0.63 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.95

n= 9 4.13 50.55 0.43 n= 9 3.42 46.15 0.78 1.00 1.00 1.00 1.00 1.00 0.99 0.97 0.99

n= 10 4.53 46.15 0.77 n= 10 3.43 50.55 0.46 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.92

Panel B: 6-month horizon

RW 8.93 – – LR 8.43 65.93 0.00

NN NN1

N= 1 9.89 49.45 0.46 N = 1 9.84 37.36 0.99 0.77 0.98 0.84 1.00 0.53 0.88 0.96 1.00

N= 2 12.53 42.86 0.91 N = 2 11.02 34.07 1.00 1.00 1.00 1.00 1.00 0.98 0.99 0.96 1.00

N= 3 11.25 54.95 0.06 N = 3 11.11 39.56 0.98 0.97 1.00 0.98 1.00 0.54 0.50 0.98 1.00

N= 4 14.67 59.34 0.01 N = 4 11.18 40.66 0.97 0.99 1.00 0.99 1.00 0.94 0.99 0.98 1.00

N= 5 15.33 50.55 0.32 N = 5 11.19 41.76 0.95 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00

N= 6 14.59 60.44 0.01 N = 6 11.13 41.76 0.96 1.00 1.00 1.00 1.00 0.98 0.99 0.99 1.00

N= 7 15.31 50.55 0.34 N = 7 11.05 48.35 0.70 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00

N= 8 16.83 49.45 0.47 N = 8 11.51 42.86 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

N= 9 19.82 45.05 0.79 N = 9 11.04 43.96 0.90 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00

N= 10 21.92 38.46 0.98 n= 10 15.57 47.25 0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Panel C: 12-month horizon

RW 11.68 – – LR 11.00 72.53 0.00

NN NN1

N= 1 17.43 45.05 0.21 N = 1 13.91 23.08 1.00 0.92 1.00 0.95 1.00 0.84 0.99 1.00 1.00

N= 2 19.15 47.25 0.18 N = 2 17.74 28.57 1.00 1.00 1.00 1.00 1.00 0.81 0.88 0.98 1.00

N= 3 22.39 42.86 0.31 N = 3 16.75 30.77 1.00 1.00 1.00 1.00 1.00 0.93 0.94 0.99 1.00

N= 4 20.27 58.24 0.01 N = 4 17.52 35.16 1.00 0.91 1.00 0.91 1.00 0.70 0.18 0.99 1.00

N= 5 19.22 72.53 0.00 N = 5 17.67 36.26 1.00 0.96 0.92 0.97 1.00 0.65 0.12 0.99 1.00

N= 6 18.96 73.63 0.00 N = 6 17.55 36.26 1.00 0.98 0.92 0.98 0.99 0.66 0.07 0.99 1.00

N= 7 20.77 57.14 0.04 N = 7 23.16 35.16 1.00 1.00 1.00 1.00 1.00 0.31 0.68 0.99 1.00

N= 8 21.77 61.54 0.00 N = 8 17.48 35.16 1.00 1.00 1.00 1.00 1.00 0.90 0.85 0.99 1.00

N= 9 24.22 59.34 0.01 N = 9 17.81 38.46 1.00 1.00 1.00 1.00 1.00 0.98 0.95 0.99 1.00

N= 10 30.91 47.25 0.40 n= 10 22.70 38.46 1.00 1.00 1.00 1.00 1.00 0.94 1.00 1.00 1.00

The table reports the performance measures of alternative forecasting models and the p-values of various test

statistics. Columns (1)– (4) are results for the random walk (RW), and the neural network model with monetary

fundamentals (NN). Columns (5)– (8) show results for the linear monetary model (LR) and the neural network

withoutmarket fundamentals (NN1). ‘‘RMSE’’ is the root mean square error; ‘‘DA’’ is direction accuracy; and ‘‘PT’’

shows the p-value of the Pesaran–Timmermann test. Columns (9) and (10) compare the NN and RW models with

the Diebold–Mariano (DM) and the signed-rank (SR) tests. Columns (11) and (12) compare the LR andNNmodels.

Columns (13) and (14) compare the NN1 andNNmodels. Columns (15) and (16) compare the NN1 andRWmodels.
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Table 2

Out-of-sample performance for the Deutsche mark

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

Model RMSE DA PT Model RMSE DA PT RW–NN LR–NN NN1–NN RW–NN1

(%) (%) (%) (%)
DM SR DM SR DM SR DM SR

Panel A: 1-month horizon

RW 3.16 – – LR 3.20 49.45 0.58

NN NN1

n= 1 3.43 45.05 0.80 n= 1 3.35 45.05 0.73 0.93 1.00 0.86 0.99 0.85 0.95 0.87 0.99

n= 2 3.60 43.96 0.82 n= 2 3.31 45.05 0.73 0.99 1.00 0.98 1.00 0.93 0.86 0.85 0.99

n= 3 3.67 47.25 0.69 n= 3 3.29 46.15 0.61 1.00 1.00 1.00 1.00 0.97 0.78 0.84 0.99

n= 4 3.67 39.56 0.97 n= 4 3.30 48.35 0.42 1.00 1.00 1.00 1.00 0.96 0.90 0.91 0.99

n= 5 3.66 47.25 0.61 n= 5 3.30 48.35 0.42 0.98 0.99 0.98 1.00 0.92 0.83 0.91 0.99

n= 6 3.72 49.45 0.50 n= 6 3.29 48.35 0.42 1.00 0.99 1.00 0.99 0.94 0.90 0.90 0.99

n= 7 3.72 47.25 0.69 n= 7 3.33 47.25 0.50 0.99 0.99 0.99 0.99 0.93 0.85 0.95 1.00

n= 8 3.58 60.44 0.02 n= 8 3.39 42.86 0.88 0.95 0.59 0.94 0.59 0.74 0.09 0.99 1.00

n= 9 3.80 58.24 0.06 n= 9 3.42 45.05 0.76 0.98 0.87 0.99 0.87 0.88 0.28 0.98 1.00

n= 10 3.95 49.45 0.56 n= 10 3.46 46.15 0.65 1.00 0.99 1.00 0.99 0.94 0.83 0.99 1.00

Panel B: 6-month horizon

RW 8.39 – – LR 9.31 49.45 0.66

NN NN1

n= 1 8.58 58.24 0.04 n= 1 9.02 54.95 0.03 0.59 0.78 0.29 0.31 0.11 0.01 0.75 0.94

n= 2 10.68 58.24 0.04 n= 2 9.23 54.95 0.03 0.96 0.99 0.80 0.89 0.87 1.00 0.81 0.94

n= 3 11.99 42.86 0.93 n= 3 9.28 54.95 0.03 1.00 1.00 0.98 1.00 0.97 1.00 0.82 0.95

n= 4 12.35 47.25 0.72 n= 4 9.48 54.95 0.03 1.00 1.00 1.00 1.00 0.99 1.00 0.84 0.95

n= 5 13.45 45.05 0.82 n= 5 9.33 53.85 0.07 1.00 1.00 1.00 1.00 1.00 1.00 0.84 0.97

n= 6 14.79 50.55 0.48 n= 6 10.30 50.55 0.31 1.00 1.00 1.00 1.00 0.96 0.98 0.93 1.00

n= 7 18.59 52.75 0.32 n= 7 10.27 54.95 0.06 1.00 1.00 1.00 1.00 0.99 1.00 0.96 1.00

n= 8 18.19 53.85 0.24 n= 8 10.55 43.96 0.89 1.00 1.00 1.00 1.00 1.00 1.00 0.96 1.00

n= 9 17.51 45.05 0.85 n= 9 11.09 47.25 0.66 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.00

n= 10 20.54 43.96 0.88 n= 10 11.11 47.25 0.66 0.99 1.00 0.99 1.00 0.97 1.00 0.98 1.00

Panel C: 12-month horizon

RW 10.96 – – LR 12.70 50.55 0.47

NN NN1

n= 1 11.26 63.74 0.00 n= 1 13.02 52.75 0.02 0.63 0.59 0.21 0.54 0.00 0.00 0.96 1.00

n= 2 21.18 31.87 1.00 n= 2 13.36 52.75 0.02 0.95 1.00 0.92 1.00 0.93 1.00 0.96 1.00

n= 3 27.42 31.87 1.00 n= 3 13.30 52.75 0.02 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00

n= 4 27.18 30.77 1.00 n= 4 13.35 52.75 0.02 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00

n= 5 30.64 26.37 1.00 n= 5 13.44 52.75 0.02 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00

n= 6 28.37 43.96 0.87 n= 6 13.48 52.75 0.02 1.00 1.00 1.00 1.00 1.00 1.00 0.96 1.00

n= 7 28.25 35.16 1.00 n= 7 13.50 52.75 0.02 1.00 1.00 1.00 1.00 1.00 1.00 0.96 1.00

n= 8 23.54 40.66 0.96 n= 8 13.52 52.75 0.02 1.00 1.00 1.00 1.00 1.00 1.00 0.96 1.00

n= 9 26.71 38.46 0.99 n= 9 13.55 52.75 0.02 1.00 1.00 1.00 1.00 1.00 1.00 0.96 1.00

n= 10 27.03 32.97 1.00 n= 10 13.56 52.75 0.02 1.00 1.00 1.00 1.00 1.00 1.00 0.96 1.00

The table reports the performance measures of alternative forecasting models and the p-values of various test

statistics. Columns (1)– (4) are results for the random walk (RW), and the neural network model with monetary

fundamentals (NN). Columns (5)– (8) show results for the linear monetary model (LR) and the neural network

without market fundamentals (NN1). ‘‘RMSE’’ is the root mean square error; ‘‘DA’’ is direction accuracy; and ‘‘PT’’

shows the p-value of the Pesaran–Timmermann test. Columns (9) and (10) compare the NN and RW models with

the Diebold–Mariano (DM) and the signed-rank (SR) tests. Columns (11) and (12) compare the LR andNNmodels.

Columns (13) and (14) compare the NN1 andNNmodels. Columns (15) and (16) compare theNN1 andRWmodels.
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5.3. The British pound

While the NN continues to perform poorly, interestingly, the NN1 is in general able to

produce a lower RMSE than both the RWand LR models. Indeed, except for n = 1 at the 1-

month horizon, the RMSE from the NN1 is lower than that of the RW for all other levels

of complexity and at all horizons. In terms of statistical significance, however, we find that

the NN1 beats the RWonly in a few cases. In particular, using the DM test, the NN1 yields

a lower RMSE at the 10% level for n = 7 at the 6-month horizon and for n = 2 at the 12-

month horizon, and at the 5% level for n = 1 at the 12-month horizon. Results are

somewhat stronger based on the SR test. Namely, the NN1 outperforms the RWat the 10%

level at the 6-month horizon for n = 4, 5, and 7, and at the 5% level at the 12-month

horizon for n = 1 and 2 (Table 3).

5.4. The Canadian dollar

The pattern for the Canadian dollar is similar to that for the British pound. The NN1

yields a lower RMSE than the RW for n below 7 at the 1- and 12-month horizons, and for

all levels of n at the 6-month horizon. None of the results are, however, statistically

significant. Furthermore, at the 1-month horizon, the NN1 shows some significant market-

timing ability (Table 4).

In summary, the findings on the forecastability of exchange rates using neural networks

are rather negative or mixed at best. The neural network model with monetary funda-

mentals as explanatory variables in general underperforms the RW across all four

currencies. The more complex the model specification or the longer the forecast horizon

is, the more poorly the model performs compared to the RW. The model without

fundamentals provides limited support for the British pound and the Canadian dollar.

The neural network models have some market-timing ability in a number of cases, yet the

evidence is not overwhelming.11 While Mark (1995) reports that the forecasting ability of

the linear model improves as the forecast horizon lengthens, the pattern is not discovered

within the NN framework.12 Furthermore, we find that our neural network models do not

seem to be superior to the simple linear model. Our global nonparametric NN results

complement the local nonparametric results of Meese and Rose (1991) and Diebold and

Nason (1990) and further demonstrates the inability of nonlinear models to forecast

exchange rate movements.

M. Qi, Y. Wu / Journal of Empirical Finance 10 (2003) 623–640634
11 By examining the forecasting errors over time, we do not find that the NN models perform significantly

poorly at particular economic episodes relative to other periods. Interestingly, the mean forecast errors of the NN

models are mostly positive for the Japanese yen and the Deutsche mark, and mostly negative for the British pound

and the Canadian dollar. On another dimension, we compare the direction accuracy of the NN models with the

relevant forward exchange rates, and find that the forward rates in general do a worse job in predicting the

direction of future exchange rate changes than the NN models. In order to conserve space, these results are not

reported but are available from the authors upon request.
12 One possible reason why we do not find the usefulness of monetary fundamentals within the NN

framework is the potential over-parameterization of the NN. To that end, we calculate the in-sample fit of the NN

models (results not reported) and find that the in-sample RMSE’s are much lower than the out-of-sample ones and

the more complex the model, the better the in-sample fit.



Table 3

Out-of-sample performance for the British pound

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

Model RMSE DA PT Model RMSE DA PT RW–NN LR–NN NN1–NN RW–NN1

(%) (%) (%) (%)
DM SR DM SR DM SR DM SR

Panel A: 1-month horizon

RW 3.20 – – LR 3.27 50.55 0.40

NN NN1

n= 1 3.34 50.55 0.40 n= 1 3.22 43.96 0.88 0.94 0.92 0.99 0.99 0.90 0.92 0.91 0.95

n= 2 3.29 46.15 0.71 n= 2 3.18 53.85 0.28 1.00 0.99 0.61 0.85 0.99 0.98 0.25 0.40

n= 3 3.43 48.35 0.60 n= 3 3.19 52.75 0.36 0.96 0.93 0.95 0.61 0.95 0.84 0.30 0.48

n= 4 3.53 42.86 0.91 n= 4 3.19 51.65 0.43 0.99 0.98 0.99 0.93 0.98 0.97 0.36 0.48

n= 5 3.41 46.15 0.82 n= 5 3.19 51.65 0.43 0.98 0.99 0.97 0.88 0.97 0.98 0.38 0.51

N= 6 3.46 45.05 0.86 n= 6 3.19 52.75 0.35 0.97 0.99 0.93 0.69 0.97 0.99 0.37 0.50

N= 7 3.46 43.96 0.91 n= 7 3.19 50.55 0.48 0.98 1.00 0.96 0.85 0.98 1.00 0.37 0.66

N= 8 3.58 40.66 0.98 n= 8 3.19 51.65 0.40 0.95 1.00 0.92 0.78 0.94 1.00 0.39 0.37

N= 9 3.68 45.05 0.89 n= 9 3.20 51.65 0.41 0.99 1.00 0.98 0.78 0.98 0.99 0.51 0.63

N= 10 3.57 45.05 0.88 n= 10 3.19 47.25 0.72 0.99 1.00 0.98 0.86 0.99 0.99 0.40 0.83

Panel B: 6-month horizon

RW 8.44 – – LR 8.71 51.65 0.29

NN NN1

N= 1 9.02 52.75 0.21 n= 1 8.37 53.85 0.13 0.93 0.97 0.99 1.00 0.89 0.96 0.35 0.30

N= 2 9.06 48.35 0.12 n= 2 7.93 56.04 0.32 0.71 0.99 0.62 1.00 0.89 0.99 0.15 0.35

N= 3 9.90 52.75 0.07 n= 3 7.84 61.54 0.09 0.97 1.00 0.90 1.00 1.00 1.00 0.12 0.13

N= 4 9.39 46.15 0.20 n= 4 7.80 62.64 0.06 0.81 1.00 0.70 1.00 0.97 1.00 0.10 0.08

N= 5 10.84 48.35 0.38 n= 5 7.82 62.64 0.06 0.97 1.00 0.94 1.00 1.00 1.00 0.11 0.09

N= 6 11.81 46.15 0.51 n= 6 7.81 60.44 0.12 0.97 1.00 0.94 1.00 0.99 1.00 0.11 0.13

N= 7 12.47 39.56 0.88 n= 7 7.73 62.64 0.04 0.96 1.00 0.94 1.00 0.98 1.00 0.09 0.09

N= 8 11.42 48.35 0.62 n= 8 7.84 52.75 0.46 0.93 1.00 0.90 1.00 0.97 1.00 0.13 0.42

N= 9 13.04 43.96 0.85 n= 9 7.82 56.04 0.28 1.00 1.00 1.00 1.00 1.00 1.00 0.13 0.34

N= 10 11.85 49.45 0.51 n= 10 7.88 54.95 0.34 0.99 1.00 0.97 1.00 1.00 1.00 0.15 0.37

Panel C: 12-month horizon

RW 10.26 – – LR 10.29 39.56 0.98

NN NN1

N= 1 10.76 38.46 0.99 n= 1 9.50 62.64 0.01 0.69 1.00 0.96 1.00 0.83 1.00 0.01 0.00

N= 2 10.45 65.93 0.00 n= 2 9.72 58.24 0.05 0.55 0.59 0.54 0.66 0.66 0.80 0.09 0.01

N= 3 12.62 56.04 0.14 n= 3 9.93 49.45 0.50 0.86 0.93 0.90 0.93 0.84 0.82 0.29 0.50

N= 4 11.88 63.74 0.00 n= 4 9.88 54.95 0.15 0.87 0.82 0.94 0.80 0.86 0.85 0.29 0.33

N= 5 14.63 48.35 0.59 n= 5 9.88 54.95 0.15 0.97 1.00 0.99 1.00 0.95 1.00 0.29 0.34

N= 6 16.33 56.04 0.14 n= 6 9.91 53.85 0.20 0.94 1.00 0.96 1.00 0.93 1.00 0.31 0.39

N= 7 15.37 60.44 0.02 n= 7 9.90 54.95 0.14 0.95 0.99 0.97 1.00 0.94 0.99 0.31 0.36

N= 8 15.16 57.14 0.09 n= 8 9.93 56.04 0.10 0.97 0.99 0.98 0.98 0.96 0.99 0.32 0.41

N= 9 16.44 51.65 0.40 n= 9 9.99 53.85 0.19 0.98 1.00 0.99 1.00 0.97 1.00 0.36 0.52

N= 10 16.85 56.04 0.13 n= 10 10.01 52.75 0.25 0.99 1.00 0.99 0.99 0.99 0.99 0.36 0.56

The table reports the performance measures of alternative forecasting models and the p-values of various test

statistics. Columns (1)– (4) are results for the random walk (RW), and the neural network model with monetary

fundamentals (NN). Columns (5)– (8) show results for the linear monetary model (LR) and the neural network

without market fundamentals (NN1). ‘‘RMSE’’ is the root mean square error; ‘‘DA’’ is direction accuracy; and ‘‘PT’’

shows the p-value of the Pesaran–Timmermann test. Columns (9) and (10) compare the NN and RW models with

the Diebold–Mariano (DM) and the signed-rank (SR) tests. Columns (11) and (12) compare the LR andNNmodels.

Columns (13) and (14) compare the NN1 andNNmodels. Columns (15) and (16) compare theNN1 andRWmodels.
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Table 4

Out-of-sample performance for the Canadian dollar

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

Model RMSE DA PT Model RMSE DA PT RW–NN LR–NN NN1–NN RW–NN1

(%) (%) (%) (%)
DM SR DM SR DM SR DM SR

Panel A: 1-month horizon

RW 1.22 – – LR 1.19 59.34 0.10

NN NN1

n= 1 1.17 59.34 0.07 n= 1 1.20 53.85 0.25 0.07 0.14 0.04 0.15 0.19 0.18 0.11 0.36

n= 2 1.20 52.75 0.72 n= 2 1.20 59.34 0.06 0.34 0.57 0.53 0.59 0.46 0.83 0.21 0.20

n= 3 1.26 49.45 0.79 n= 3 1.20 60.44 0.04 0.80 0.81 0.92 0.92 0.88 0.87 0.21 0.21

n= 4 1.29 49.45 0.67 n= 4 1.20 60.44 0.04 0.93 0.92 0.98 0.97 0.96 0.93 0.26 0.25

n= 5 1.30 47.25 0.85 n= 5 1.20 59.34 0.05 0.94 0.97 0.99 0.99 0.97 0.96 0.22 0.23

n= 6 1.29 49.45 0.64 n= 6 1.20 61.54 0.02 0.88 0.87 0.95 0.94 0.92 0.86 0.21 0.22

n= 7 1.26 52.75 0.43 n= 7 1.22 57.14 0.12 0.78 0.76 0.89 0.83 0.77 0.85 0.49 0.49

n= 8 1.32 56.04 0.21 n= 8 1.26 59.34 0.04 0.92 0.85 0.97 0.93 0.74 0.68 0.83 0.56

n= 9 1.57 51.65 0.48 n= 9 1.30 54.95 0.17 1.00 1.00 1.00 1.00 1.00 0.99 0.95 0.81

n= 10 1.74 56.04 0.22 n= 10 1.29 56.04 0.09 0.97 0.99 0.97 1.00 0.94 0.92 0.91 0.67

Panel B: 6-month horizon

RW 2.83 – – LR 2.75 63.74 0.00

NN NN1

n= 1 2.58 65.93 0.00 n= 1 2.72 56.04 0.17 0.09 0.00 0.00 0.00 0.24 0.02 0.16 0.17

n= 2 3.24 47.25 0.98 n= 2 2.69 56.04 0.19 0.88 1.00 0.87 0.99 0.94 1.00 0.18 0.32

n= 3 3.19 59.34 0.22 n= 3 2.73 51.65 0.34 0.85 0.87 0.87 0.91 0.95 0.96 0.24 0.78

n= 4 3.17 59.34 0.11 n= 4 2.71 57.14 0.13 0.76 0.53 0.80 0.55 0.82 0.58 0.22 0.51

n= 5 3.65 57.14 0.15 n= 5 2.72 50.55 0.72 0.98 0.98 0.99 0.99 0.99 0.99 0.26 0.73

n= 6 4.20 57.14 0.08 n= 6 2.65 57.14 0.32 1.00 0.99 1.00 1.00 1.00 1.00 0.18 0.42

n= 7 4.20 60.44 0.03 n= 7 2.65 56.04 0.43 0.99 0.93 1.00 0.99 1.00 0.99 0.18 0.42

n= 8 4.69 53.85 0.41 n= 8 2.65 58.24 0.22 1.00 1.00 1.00 1.00 1.00 1.00 0.19 0.43

n= 9 3.74 48.35 0.69 n= 9 2.64 56.04 0.39 0.99 0.99 0.99 0.99 1.00 1.00 0.18 0.50

n= 10 4.51 57.14 0.19 n= 10 2.64 57.14 0.28 1.00 1.00 1.00 1.00 1.00 1.00 0.17 0.44

Panel C: 12-month horizon

RW 4.39 – – LR 4.40 59.34 0.00

NN NN1

n= 1 4.28 67.03 0.00 n= 1 4.43 52.75 0.44 0.39 0.07 0.16 0.00 0.39 0.01 0.55 0.81

n= 2 6.51 48.35 0.53 n= 2 4.33 53.85 0.37 0.98 1.00 0.96 1.00 0.97 1.00 0.45 0.85

n= 3 5.04 49.45 0.71 n= 3 4.28 48.35 0.70 0.86 0.91 0.81 0.83 0.89 0.75 0.39 0.94

n= 4 6.72 47.25 0.76 n= 4 4.21 50.55 0.57 1.00 1.00 0.99 1.00 1.00 1.00 0.32 0.81

n= 5 6.81 47.25 0.73 n= 5 4.29 42.86 0.92 1.00 1.00 1.00 1.00 1.00 1.00 0.41 0.95

n= 6 6.91 51.65 0.33 n= 6 4.20 42.86 0.92 1.00 1.00 1.00 1.00 1.00 1.00 0.31 0.92

n= 7 7.98 48.35 0.60 n= 7 4.45 45.05 0.83 1.00 1.00 1.00 1.00 1.00 1.00 0.58 0.95

n= 8 6.90 48.35 0.64 n= 8 4.45 45.05 0.83 0.99 1.00 0.99 1.00 0.99 1.00 0.58 0.95

n= 9 7.69 51.65 0.40 n= 9 4.34 45.05 0.85 0.99 1.00 0.99 1.00 0.99 1.00 0.45 0.89

n= 10 10.85 54.95 0.25 n= 10 4.74 42.86 0.92 0.91 1.00 0.91 1.00 0.91 1.00 0.77 0.99

The table reports the performance measures of alternative forecasting models and the p-values of various test

statistics. Columns (1)– (4) are results for the random walk (RW), and the neural network model with monetary

fundamentals (NN). Columns (5)– (8) show results for the linear monetary model (LR) and the neural network

withoutmarket fundamentals (NN1). ‘‘RMSE’’ is the root mean square error; ‘‘DA’’ is direction accuracy; and ‘‘PT’’

shows the p-value of the Pesaran–Timmermann test. Columns (9) and (10) compare the NN and RW models with

the Diebold–Mariano (DM) and the signed-rank (SR) tests. Columns (11) and (12) compare the LR andNNmodels.

Columns (13) and (14) compare the NN1 andNNmodels. Columns (15) and (16) compare the NN1 andRWmodels.
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6. Conclusion

Forecasting exchange rates has been an extremely difficult task and has long posed a

challenge to academicians. Since the publication of Meese and Rogoff (1983), researchers

have devoted enormous effort to formulating elegant models and developing sophisticated

forecasting techniques in an attempt to beat the naive random walk model.

The goal of this paper has been to re-examine the predictability of exchange rates so as

to shed some more light on the aforementioned long-standing issue. We postulate that

economic fundamentals are important in driving exchange rates but the underlying relation

between exchange rates and fundamentals may be inherently too complex for traditional

linear models to capture adequately. Our work is motivated by several previous studies, in

particular, Diebold and Nason (1990) and Meese and Rose (1991) who report negative

findings using a local nonparametric method; and Kuan and Liu (1995), Brooks (1997),

and Gencay (1999), who show the promise on high frequency forecasting of using the NN.

We thus employ the NN—a global nonlinear procedure and choose as guided by economic

theory a parsimonious set of monetary fundamentals as explanatory variables to forecast

four major exchange rates. We find a general lack of ability of the NN in forecasting

currency price movements. Our model with monetary fundamentals produces higher

RMSE than both the random walk model and a simple linear monetary model, although it

occasionally shows a limited market-timing ability. Results from the neural network model

without fundamentals are only somewhat more supportive for the British pound and the

Canadian dollar. The performance of the model deteriorates compared to the RW when the

specification becomes more complex or when the forecast horizon lengthens. Our overall

results are more on the negative side and suggest that neither nonlinearity nor market

fundamentals appear to be very important in improving exchange rate forecast for the

chosen horizons. Despite the demonstrated superiority of the NN compared to the local

nonparametric method for high frequency data, we fail to find its relevance in lower

frequency forecasting with market fundamentals. Our findings complement the local

nonparametric results of Meese and Rose (1991) and Diebold and Nason (1990) and

further demonstrates the inability of nonlinear models to forecast exchange rate move-

ments. Therefore, the Meese–Rogoff results cannot be overturned even with the global

nonparametric neural network models.

Several extensions are possible for future research. First, the value of the dollar

appreciated dramatically in the early 1980s and abruptly dropped from late 1985, a

peculiar phenomenon often called the ‘‘dollar cycle.’’ It is unclear how this cycle affects

the forecasting performance of alternative models. To avoid the possible ‘‘dollar cycle’’

effect, one can employ different vehicle currencies and examine the forecastability of

currency prices relative to these alternative vehicle currencies.13 Second, we have adopted

a ‘‘rolling regression’’ strategy so as to make maximum use of sample observations in the

estimation period. It will be interesting to see how a ‘‘moving regression’’ approach (with
13 We have used the Deutsche mark as the vehicle currency and examine the forecastability of three exchange

rates relative to the German mark. The results do not improve significantly and we obtain basically the same

conclusion for the Deutsche mark-based exchange rates as the dollar-based exchange rates. These results are

available upon request.
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a fixed window size) performs as this latter strategy can capture possible structural

changes in sample and thus may do better if structural changes did occur. Third, the

forecast horizon of the NN can be extended up to 4 years to offer an interesting

comparison to the long-horizon linear predictability documented in Mark (1995). Finally,

it may be fruitful to compare the performance of the NN models with alternative

parametric nonlinear models, such as ARCH-M, multivariate polynomial, piece-wise

linear, and Markov-switching models. These as well as others are beyond the scope of this

paper and are left for future research.
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