1D Problems

First recall the use of derivatives in simple one-dimensional (one variable) problems. The equations for a line, for example, and its slope (the derivative) are

\[F = ax + b \]
\[\frac{dF}{dx} = a \]

(1)

The slope of the function \(F \) along slices parallel to the x-axis at a fixed value of \(y \) is called a \textit{partial derivative}, \(\frac{\partial F}{\partial x} \). Another partial derivative of \(F \) can be written for the slope of slices parallel to the y-axis, \(\frac{\partial F}{\partial y} \). The subscripts \(x \) or \(y \) simply serve as reminders that the one variable is treated as a constant when computing the derivative with respect to the other variable.

2D Example

Now imagine a simple two-dimensional (two variables) problem. The simple equation describing a plane can be used to illustrate the notion of partial derivatives.

\[F = ax + by + c \]
\[\left(\frac{\partial F}{\partial x} \right)_y = a \]
\[\left(\frac{\partial F}{\partial y} \right)_x = b \]

(2)

The total derivative of \(F \) is a tiny piece of the surface defined by the partial derivatives:

\[dF = \left(\frac{\partial F}{\partial x} \right)_y \, dx + \left(\frac{\partial F}{\partial y} \right)_x \, dy \]

(3)

It is straightforward to extend the two-dimensional case to problems with many dimensions.